Spaces:
Sleeping
Sleeping
File size: 1,554 Bytes
9c31a35 3d7c303 9bfcbfa 3d7c303 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 51a6b05 9c31a35 7d4300a 9c31a35 7d4300a 9bfcbfa b07eb2d 7d4300a 9bfcbfa 7d4300a 9bfcbfa 7d4300a 9bfcbfa 7d4300a 9bfcbfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import unittest
import numpy as np
import pandas as pd
from pysr import sympy2torch, get_hof
import torch
import sympy
class TestTorch(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2torch(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
X = torch.tensor(np.random.randn(1000, 3))
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
torch_module = sympy2torch(cosx, [x, y, z])
self.assertTrue(
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
)
def test_pipeline(self):
X = np.random.randn(100, 10)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x0)", "square(cos(x0))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
equations = get_hof(
"equation_file.csv",
n_features=2,
variables_names="x1 x2 x3".split(" "),
extra_sympy_mappings={},
output_torch_format=True,
multioutput=False,
nout=1,
selection=[1, 2, 3],
)
tformat = equations.iloc[-1].torch_format
np.testing.assert_almost_equal(
tformat(torch.tensor(X)).detach().numpy(),
np.square(np.cos(X[:, 1])), # Selection 1st feature
decimal=4,
)
|