Spaces:
Running
Running
File size: 2,469 Bytes
2f38c9c 41e5fd5 a0c6429 9bfcbfa 41e5fd5 7d4300a 2f38c9c 51a6b05 2f38c9c 7d4300a 2f38c9c 7d4300a c7187a6 9bfcbfa b07eb2d 7d4300a b444c7e 7d4300a 9bfcbfa 7d4300a 9bfcbfa a0c6429 7d4300a 5e0dd71 7d4300a 9bfcbfa c7187a6 a0c6429 d398bf9 9bfcbfa 7d4300a 9bfcbfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
import unittest
import numpy as np
from pysr import sympy2jax, PySRRegressor
import pandas as pd
from jax import numpy as jnp
from jax import random
import sympy
class TestJAX(unittest.TestCase):
def setUp(self):
np.random.seed(0)
def test_sympy2jax(self):
x, y, z = sympy.symbols("x y z")
cosx = 1.0 * sympy.cos(x) + y
key = random.PRNGKey(0)
X = random.normal(key, (1000, 2))
true = 1.0 * jnp.cos(X[:, 0]) + X[:, 1]
f, params = sympy2jax(cosx, [x, y, z])
self.assertTrue(jnp.all(jnp.isclose(f(X, params), true)).item())
def test_pipeline_pandas(self):
X = pd.DataFrame(np.random.randn(100, 10))
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model = PySRRegressor(
equation_file="equation_file.csv",
output_jax_format=True,
variable_names="x1 x2 x3".split(" "),
)
model.fit(X, y=np.ones(X.shape[0]), from_equation_file=True)
model.refresh()
jformat = model.jax()
np.testing.assert_almost_equal(
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
np.square(np.cos(X.values[:, 1])), # Select feature 1
decimal=4,
)
def test_pipeline(self):
X = np.random.randn(100, 10)
equations = pd.DataFrame(
{
"Equation": ["1.0", "cos(x1)", "square(cos(x1))"],
"MSE": [1.0, 0.1, 1e-5],
"Complexity": [1, 2, 3],
}
)
equations["Complexity MSE Equation".split(" ")].to_csv(
"equation_file.csv.bkup", sep="|"
)
model = PySRRegressor(
equation_file="equation_file.csv",
output_jax_format=True,
variable_names="x1 x2 x3".split(" "),
)
model.fit(X, y=np.ones(X.shape[0]), from_equation_file=True)
model.refresh()
jformat = model.jax()
np.testing.assert_almost_equal(
np.array(jformat["callable"](jnp.array(X), jformat["parameters"])),
np.square(np.cos(X[:, 1])), # Select feature 1
decimal=4,
)
|