Spaces:
Running
Running
File size: 1,507 Bytes
106e870 d0b4c7f 106e870 d0b4c7f 106e870 8aad65b 106e870 c38b845 106e870 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
from transformers import AutoModel, AutoTokenizer
import torch.nn as nn
import torch
class SingleLabelClassifier(nn.Module):
def __init__(self, base_model_name, num_labels, hidden_size=2024, freeze_bert=True):
super(SingleLabelClassifier, self).__init__()
self.base = AutoModel.from_pretrained(base_model_name)
if freeze_bert:
for name, param in self.base.named_parameters():
if not name.startswith("embeddings"):
param.requires_grad = False
self.intermediate = nn.Linear(self.base.config.hidden_size, hidden_size)
self.norm = nn.LayerNorm(hidden_size)
self.activation = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self.classifier = nn.Linear(hidden_size, num_labels)
def forward(self, input_ids, attention_mask=None, token_type_ids=None,labels=None):
outputs = self.base(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
return_dict=True
)
pooled_output = outputs.last_hidden_state[:, 0]
x = self.intermediate(pooled_output)
x = self.norm(x)
x = self.activation(x)
x = self.dropout(x)
logits = self.classifier(x)
loss = None
if labels is not None:
labels = labels.long()
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits, labels)
return {"logits": logits, "loss": loss} |