File size: 1,507 Bytes
106e870
 
 
 
 
d0b4c7f
106e870
 
 
 
 
 
 
 
 
d0b4c7f
106e870
8aad65b
106e870
 
 
 
 
 
 
 
 
c38b845
106e870
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from transformers import AutoModel, AutoTokenizer
import torch.nn as nn
import torch

class SingleLabelClassifier(nn.Module):
    def __init__(self, base_model_name, num_labels, hidden_size=2024, freeze_bert=True):
        super(SingleLabelClassifier, self).__init__()
        self.base = AutoModel.from_pretrained(base_model_name)

        if freeze_bert:
            for name, param in self.base.named_parameters():
                if not name.startswith("embeddings"):
                    param.requires_grad = False

        self.intermediate = nn.Linear(self.base.config.hidden_size, hidden_size)
        self.norm = nn.LayerNorm(hidden_size)
        self.activation = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        self.classifier = nn.Linear(hidden_size, num_labels)

    def forward(self, input_ids, attention_mask=None, token_type_ids=None,labels=None):
        outputs = self.base(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            return_dict=True
        )
        pooled_output = outputs.last_hidden_state[:, 0]
        x = self.intermediate(pooled_output)
        x = self.norm(x)
        x = self.activation(x)
        x = self.dropout(x)
        logits = self.classifier(x)

        loss = None
        if labels is not None:
            labels = labels.long() 
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits, labels)


        return {"logits": logits, "loss": loss}