File size: 6,229 Bytes
359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
from datetime import date, datetime, timedelta
import joblib
import pandas as pd
import torch
from dotenv import load_dotenv
from huggingface_hub import hf_hub_download, login
from src.data_api_calls import (
get_combined_data,
update_pollution_data,
update_weather_data,
)
from src.features_pipeline import create_features
load_dotenv()
login(token=os.getenv("HUGGINGFACE_DOWNLOAD_TOKEN"))
def load_nn() -> torch.nn.Module:
"""
Loads the neural network model for air pollution forecasting.
Returns:
torch.nn.Module: The loaded neural network model.
"""
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
class AirPollutionNet(nn.Module, PyTorchModelHubMixin):
def __init__(self, input_size: int, layers: list[int], dropout_rate: float):
super(AirPollutionNet, self).__init__()
self.layers_list = nn.ModuleList()
in_features = input_size
for units in layers:
self.layers_list.append(nn.Linear(in_features, units))
self.layers_list.append(nn.ReLU())
self.layers_list.append(nn.Dropout(p=dropout_rate))
in_features = units
self.output = nn.Linear(in_features, 3) # Output size is 3 for next 3 days
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the neural network.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after passing through the network.
"""
for layer in self.layers_list:
x = layer(x)
x = self.output(x)
return x
model = AirPollutionNet.from_pretrained(
"akseljoonas/Utrecht_pollution_forecasting_NO2"
)
return model
def load_model(particle: str) -> object:
"""
Loads the forecasting model based on the specified particle.
Args:
particle (str): The type of particle ("O3" or "NO2").
Returns:
object: The loaded model (either a neural network or a support vector regression model).
"""
repo_id = f"elisaklunder/Utrecht-{particle}-Forecasting-Model"
if particle == "O3":
file_name = "O3_svr_model.pkl"
model_path = hf_hub_download(repo_id=repo_id, filename=file_name)
model = joblib.load(model_path)
else:
model = load_nn()
return model
def run_model(particle: str, data: pd.DataFrame) -> list:
"""
Runs the model for the specified particle and makes predictions based on the input data.
Args:
particle (str): The type of particle ("O3" or "NO2").
data (pd.DataFrame): The input data for making predictions.
Returns:
list: The predictions for the specified particle.
"""
input_data = create_features(data=data, target_particle=particle)
model = load_model(particle)
if particle == "NO2":
with torch.no_grad():
prediction = model(torch.tensor(input_data.values, dtype=torch.float32))
repo_id = "akseljoonas/Utrecht_pollution_forecasting_NO2"
file_name = "target_scaler_NO2.joblib"
path = hf_hub_download(repo_id=repo_id, filename=file_name)
else:
prediction = model.predict(input_data)
repo_id = f"elisaklunder/Utrecht-{particle}-Forecasting-Model"
file_name = f"target_scaler_{particle}.joblib"
path = hf_hub_download(repo_id=repo_id, filename=file_name)
target_scaler = joblib.load(path)
prediction = target_scaler.inverse_transform(prediction)
return prediction
def update_data_and_predictions() -> None:
"""
Updates the weather and pollution data, makes predictions for O3 and NO2,
and stores them in a CSV file.
"""
update_weather_data()
update_pollution_data()
week_data = get_combined_data()
o3_predictions = run_model("O3", data=week_data)
no2_predictions = run_model("NO2", data=week_data)
prediction_data = []
for i in range(3):
prediction_data.append(
{
"pollutant": "O3",
"date_predicted": date.today(),
"date": date.today() + timedelta(days=i + 1),
"prediction_value": o3_predictions[0][i],
}
)
prediction_data.append(
{
"pollutant": "NO2",
"date_predicted": date.today(),
"date": date.today() + timedelta(days=i + 1),
"prediction_value": no2_predictions[0][i],
}
)
predictions_df = pd.DataFrame(prediction_data)
PREDICTIONS_FILE = "predictions_history.csv"
if os.path.exists(PREDICTIONS_FILE):
existing_data = pd.read_csv(PREDICTIONS_FILE)
# Filter out predictions made today to avoid duplicates
existing_data = existing_data[
~(existing_data["date_predicted"] == str(date.today()))
]
combined_data = pd.concat([existing_data, predictions_df])
combined_data.drop_duplicates()
else:
combined_data = predictions_df
combined_data.to_csv(PREDICTIONS_FILE, index=False)
def get_data_and_predictions() -> tuple[pd.DataFrame, list, list]:
"""
Retrieves combined data and today's predictions for O3 and NO2.
Returns:
tuple: A tuple containing:
- week_data (pd.DataFrame): The combined data for the week.
- list: Predictions for O3.
- list: Predictions for NO2.
"""
week_data = get_combined_data()
PREDICTIONS_FILE = "predictions_history.csv"
data = pd.read_csv(PREDICTIONS_FILE)
today = datetime.today().strftime("%Y-%m-%d")
today_predictions = data[(data["date_predicted"] == today)]
# Extract predictions for O3 and NO2
o3_predictions = today_predictions[today_predictions["pollutant"] == "O3"][
"prediction_value"
].values
no2_predictions = today_predictions[today_predictions["pollutant"] == "NO2"][
"prediction_value"
].values
return week_data, [o3_predictions], [no2_predictions]
if __name__ == "__main__":
update_data_and_predictions()
|