File size: 8,378 Bytes
359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c 359c749 8db7b4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import altair as alt
import pandas as pd
import plotly.graph_objects as go
import streamlit as st
from src.helper_functions import custom_metric_box, pollution_box
from src.predict import get_data_and_predictions, update_data_and_predictions
st.set_page_config(
page_title="Utrecht Pollution Dashboard ",
page_icon="🌱",
layout="wide",
initial_sidebar_state="expanded",
)
alt.themes.enable("dark")
update_data_and_predictions()
week_data, predictions_O3, predictions_NO2 = get_data_and_predictions()
today = week_data.iloc[-1]
previous_day = week_data.iloc[-2]
dates_past = pd.date_range(end=pd.Timestamp.today(), periods=8).to_list()
dates_future = pd.date_range(
start=pd.Timestamp.today() + pd.Timedelta(days=1), periods=3
).to_list()
# O3 and NO2 values for the past 7 days
o3_past_values = week_data["O3"]
no2_past_values = week_data["NO2"]
o3_future_values = pd.Series(predictions_O3[0].flatten())
no2_future_values = pd.Series(predictions_NO2[0].flatten())
o3_values = pd.concat([o3_past_values, o3_future_values], ignore_index=True)
no2_values = pd.concat([no2_past_values, no2_future_values], ignore_index=True)
dates = dates_past + dates_future
df = pd.DataFrame({"Date": dates, "O3": o3_values, "NO2": no2_values})
# App Title
st.title("Utrecht Pollution Dashboard 🌱")
col1, col2 = st.columns((1, 3))
# Create a 3-column layout
with col1:
st.subheader("Current Weather")
custom_metric_box(
label="🥵 Temperature",
value=f"{round(today['mean_temp'] * 0.1)} °C",
)
custom_metric_box(
label="💧 Humidity",
value=f"{round(today['humidity'])} %",
)
custom_metric_box(
label="🪨 Pressure",
value=f"{round(today['pressure'] * 0.1)} hPa",
)
custom_metric_box(
label="🌧️ Precipitation",
value=f"{round(today['percipitation'] * 0.1)} mm",
)
custom_metric_box(
label="🌤️ Solar Radiation",
value=f"{round(today['global_radiation'])} J/m²",
)
custom_metric_box(
label="🌪️ Wind Speed",
value=f"{round(today['wind_speed'] * 0.1, 1)} m/s",
)
with col2:
st.subheader("Current Pollution Levels")
sub1, sub2 = st.columns((1, 1))
# Ozone (O₃) Pollution Box
with sub1:
pollution_box(
label="O<sub>3</sub>",
value=f"{round(today['O3'])} µg/m³",
delta=f"{round(int(today['O3']) - int(previous_day['O3']))} µg/m³",
threshold=120,
)
with st.expander("Learn more about O3", expanded=False):
st.markdown(
"""
*Ozone (O<sub>3</sub>)*: A harmful gas at ground level that can irritate the respiratory system and aggravate asthma.<br>
**Good/Bad**: "Good" means safe levels for most people, while "Bad" suggests harmful levels, especially for sensitive groups.
""",
unsafe_allow_html=True,
)
# Nitrogen Dioxide (NO₂) Pollution Box
with sub2:
pollution_box(
label="NO<sub>2</sub>",
value=f"{round(today['NO2'])} µg/m³",
delta=f"{round(int(today['NO2']) - int(previous_day['NO2']))} µg/m³",
threshold=40,
)
with st.expander("Learn more about NO2", expanded=False):
st.markdown(
"""
*Nitrogen Dioxide (NO<sub>2</sub>)*: A toxic gas that contributes to lung irritation and worsens asthma and other respiratory issues.<br>
**Good/Bad**: "Good" means safe air quality, while "Bad" indicates levels that could cause respiratory problems, especially for vulnerable individuals.
""",
unsafe_allow_html=True,
)
# Create two columns for two separate graphs
st.subheader("O3 Forecast")
# Define the new color logic: green, orange, and red based on the threshold
def get_simple_color_scale(values, threshold):
"""Returns green for values below the threshold, orange for values between the threshold and 2x the threshold, and red for values above 2x the threshold."""
return [
"#77C124"
if v < threshold
else "#E68B0A"
if v < 2 * threshold
else "#E63946"
for v in values
]
# O3 Bar Plot (threshold: 40)
o3_past_values = o3_values[:-3] # Last 3 values are predictions
o3_future_values = o3_values[-3:] # Last 3 values are predictions
o3_colors = get_simple_color_scale(o3_past_values, 40) # Color for past values
fig_o3 = go.Figure()
# Add past values
fig_o3.add_trace(
go.Bar(
x=df["Date"][:-3], # Dates for past values
y=o3_past_values,
name="O3 Past",
marker=dict(color=o3_colors), # Apply the color scale
hovertemplate="%{x|%d-%b-%Y}<br>%{y} µg/m³<extra></extra>",
)
)
# Add predicted values with reduced opacity
predicted_o3_colors = get_simple_color_scale(
o3_future_values, 40
) # Color for future values
fig_o3.add_trace(
go.Bar(
x=df["Date"][-3:], # Dates for predicted values
y=o3_future_values,
name="O3 Predicted",
marker=dict(
color=predicted_o3_colors, opacity=0.5
), # Set opacity to 0.5 for predictions
hovertemplate="%{x|%d-%b-%Y}<br>%{y} µg/m³<extra></extra>",
)
)
fig_o3.add_shape(
dict(
type="line",
x0=pd.Timestamp.today(),
x1=pd.Timestamp.today(),
y0=min(o3_values),
y1=max(o3_values),
line=dict(color="White", width=3, dash="dash"),
)
)
fig_o3.update_layout(
plot_bgcolor="rgba(0, 0, 0, 0)",
paper_bgcolor="rgba(0, 0, 0, 0)",
yaxis_title="O3 Concentration (µg/m³)",
font=dict(size=14),
hovermode="x",
xaxis=dict(
title="Date",
type="date",
tickmode="array",
tickvals=df["Date"],
tickformat="%d-%b",
tickangle=-45,
tickcolor="gray",
),
showlegend=False, # Disable legend
)
st.plotly_chart(fig_o3, key="fig_o3")
# NO2 Bar Plot (threshold: 120)
st.subheader("NO2 Forecast")
no2_past_values = no2_values[:-3] # Last 3 values are predictions
no2_future_values = no2_values[-3:] # Last 3 values are predictions
no2_colors = get_simple_color_scale(no2_past_values, 120) # Color for past values
fig_no2 = go.Figure()
# Add past values
fig_no2.add_trace(
go.Bar(
x=df["Date"][:-3], # Dates for past values
y=no2_past_values,
name="NO2 Past",
marker=dict(color=no2_colors), # Apply the color scale
hovertemplate="%{x|%d-%b-%Y}<br>%{y} µg/m³<extra></extra>",
)
)
# Add predicted values with reduced opacity
predicted_no2_colors = get_simple_color_scale(
no2_future_values, 120
) # Color for future values
fig_no2.add_trace(
go.Bar(
x=df["Date"][-3:], # Dates for predicted values
y=no2_future_values,
name="NO2 Predicted",
marker=dict(
color=predicted_no2_colors, opacity=0.5
), # Set opacity to 0.5 for predictions
hovertemplate="%{x|%d-%b-%Y}<br>%{y} µg/m³<extra></extra>",
)
)
fig_no2.add_shape(
dict(
type="line",
x0=pd.Timestamp.today(),
x1=pd.Timestamp.today(),
y0=min(no2_values),
y1=max(no2_values),
line=dict(color="White", width=3, dash="dash"),
)
)
fig_no2.update_layout(
plot_bgcolor="rgba(0, 0, 0, 0)",
paper_bgcolor="rgba(0, 0, 0, 0)",
yaxis_title="NO<sub>2</sub> Concentration (µg/m³)",
font=dict(size=14),
hovermode="x",
xaxis=dict(
title="Date",
type="date",
tickmode="array",
tickvals=df["Date"],
tickformat="%d-%b",
tickangle=-45,
tickcolor="gray",
),
showlegend=False, # Disable legend
)
st.plotly_chart(fig_no2, key="fig_no2")
|