File size: 8,173 Bytes
359c749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import streamlit as st
from sklearn.metrics import mean_squared_error
from src.data_api_calls import get_combined_data
USERNAME = "admin"
PASSWORD = "password"
st.title("Admin Panel")
# Use session state to remember login state
if "login_success" not in st.session_state:
st.session_state.login_success = False
# Login Form
if not st.session_state.login_success:
with st.form("login_form"):
st.write("Please login to access the admin dashboard:")
username = st.text_input("Username")
password = st.text_input("Password", type="password")
login_button = st.form_submit_button("Login")
if login_button:
if username == USERNAME and password == PASSWORD:
st.session_state.login_success = True
st.success("Login successful!")
else:
st.error("Invalid username or password.")
else:
# Fetching the combined data
table_data = get_combined_data()
# Check for missing values
missing_values = table_data.isnull()
# Display the main data table
st.subheader("Data used for the prediction")
# Display message based on whether data is complete
if missing_values.values.any():
# Warning message if there are missing values
st.markdown(
"<h4 style='color: #E68B0A;'>Warning: Some data is missing!</h4>",
unsafe_allow_html=True,
)
# Identify columns with missing values
missing_columns = table_data.columns[missing_values.any()].tolist()
# Identify rows (dates) with missing values
missing_rows = table_data[missing_values.any(axis=1)]["Date"].tolist()
# Display additional information about missing columns and rows
if missing_columns:
st.markdown(f"**Columns with missing data:** {', '.join(missing_columns)}")
if missing_rows:
st.markdown(
f"**Rows with missing data (dates):** {', '.join(missing_rows)}"
)
else:
# Success message if no data is missing
st.markdown(
"<h4 style='color: #77C124;'>All data is complete!</h4>",
unsafe_allow_html=True,
)
st.dataframe(table_data)
# Actual data vs 1,2,3 days ahead predictions
actual_data = pd.read_csv("pollution_data.csv")
prediction_data = pd.read_csv("predictions_history.csv")
col1, col2 = st.columns(2)
with col1:
pollutant = st.radio("Select a pollutant", ("O3", "NO2"))
with col2:
days_ahead = st.radio("Select days ahead for prediction", (1, 2, 3))
predictions = prediction_data[prediction_data["pollutant"] == pollutant]
actual = actual_data[["date", pollutant]].rename(
columns={pollutant: "actual_value"}
)
predictions_filtered = predictions[
predictions["date_predicted"]
== (
pd.to_datetime(predictions["date"]) - pd.Timedelta(days=days_ahead)
).dt.strftime("%Y-%m-%d")
]
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=actual["date"],
y=actual["actual_value"],
mode="lines+markers",
name="Ground Truth",
line=dict(color="green", width=3),
)
)
fig.add_trace(
go.Scatter(
x=predictions_filtered["date"],
y=predictions_filtered["prediction_value"],
mode="lines+markers",
name=f"Prediction {days_ahead} day(s) ahead",
line=dict(dash="dash", color="orange", width=3),
)
)
fig.update_layout(
title=f"{pollutant} Predictions vs Actual Values",
xaxis_title="Date",
yaxis_title=f"{pollutant} Concentration",
legend=dict(x=0, y=1),
yaxis=dict(range=[0, 60]),
template="plotly_white",
xaxis=dict(
title="Date",
type="date",
tickmode="array",
tickvals=predictions["date"],
tickformat="%d-%b",
tickangle=-45,
tickcolor="gray",
),
)
st.plotly_chart(fig)
# Evaluation Function
def evaluate_predictions_all_days(actual, predictions):
rmse_values_all = {"O3": [], "NO2": []}
smape_values_all = {"O3": [], "NO2": []}
for pollutant in ["O3", "NO2"]:
predictions_pollutant = predictions[predictions["pollutant"] == pollutant]
actual_pollutant = actual_data[["date", pollutant]].rename(
columns={pollutant: "actual_value"}
)
# Calculate RMSE and SMAPE for each day (1st, 2nd, and 3rd)
for i in range(1, 4):
predictions_filtered = predictions_pollutant[
predictions_pollutant["date_predicted"]
== (
pd.to_datetime(predictions_pollutant["date"])
- pd.Timedelta(days=i)
).dt.strftime("%Y-%m-%d")
]
actual_filtered = actual_pollutant[
actual_pollutant["date"].isin(predictions_filtered["date"])
]
merged = pd.merge(
actual_filtered,
predictions_filtered,
left_on="date",
right_on="date",
)
if not merged.empty:
actual_values = merged["actual_value"].values
prediction_values = merged["prediction_value"].values
rmse = np.sqrt(mean_squared_error(actual_values, prediction_values))
rmse_values_all[pollutant].append(rmse)
smape = (
100
/ len(actual_values)
* np.sum(
2
* np.abs(prediction_values - actual_values)
/ (np.abs(actual_values) + np.abs(prediction_values))
)
)
smape_values_all[pollutant].append(smape)
# Plot RMSE and SMAPE for both pollutants
fig_rmse = go.Figure()
for day in range(3):
fig_rmse.add_trace(
go.Bar(
x=["O3", "NO2"],
y=[rmse_values_all["O3"][day], rmse_values_all["NO2"][day]],
name=f"Day {day + 1}",
)
)
fig_rmse.update_layout(
title="RMSE for Predictions Over 3 Days",
yaxis_title="RMSE",
xaxis_title="Pollutant",
barmode="group",
)
st.plotly_chart(fig_rmse)
fig_smape = go.Figure()
for day in range(3):
fig_smape.add_trace(
go.Bar(
x=["O3", "NO2"],
y=[smape_values_all["O3"][day], smape_values_all["NO2"][day]],
name=f"Day {day + 1}",
)
)
fig_smape.update_layout(
title="SMAPE for Predictions Over 3 Days",
yaxis_title="SMAPE (%)",
xaxis_title="Pollutant",
barmode="group",
)
st.plotly_chart(fig_smape)
# Calculate total current SMAPE and RMSE
total_O3_smape = sum(smape_values_all["O3"]) / len(smape_values_all)
total_NO2_smape = sum(smape_values_all["NO2"]) / len(smape_values_all)
total_O3_rmse = sum(rmse_values_all["O3"]) / len(rmse_values_all)
total_NO2_rmse = sum(rmse_values_all["NO2"]) / len(rmse_values_all)
# Display metrics table
metrics_data = {
"Metric": [
"Current NO2 SMAPE (%)",
"Current NO2 RMSE (µg/m3)",
"Current O3 SMAPE (%)",
"Current O3 RMSE (µg/m3)",
],
"Value": [total_NO2_smape, total_NO2_rmse, total_O3_smape, total_O3_rmse],
}
metrics_df = pd.DataFrame(metrics_data)
st.table(metrics_df)
evaluate_predictions_all_days(actual_data, prediction_data)
|