File size: 5,092 Bytes
6a440fc
 
5064f83
6a440fc
5064f83
6a440fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c18c58
 
6a440fc
 
 
2c18c58
 
6a440fc
 
2c18c58
 
6a440fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeaf86d
6a440fc
 
 
eeaf86d
6a440fc
 
 
5064f83
6a440fc
 
eeaf86d
6a440fc
 
eeaf86d
 
6a440fc
 
5064f83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import pandas as pd
import joblib

def create_features(
    data,
    target_particle,  # Added this parameter
    lag_days=7,
    sma_days=7,
):
    """
    Creates lagged features, SMA features, last year's particle data (NO2 and O3) for specific days,
    sine and cosine transformations for 'weekday' and 'month', and target variables for the specified
    particle ('O3' or 'NO2') for the next 'days_ahead' days. Scales features and targets without
    disregarding outliers and saves the scalers for inverse scaling. Splits the data into train,
    validation, and test sets using the most recent dates. Prints the number of rows with missing
    values dropped from the dataset.

    Parameters:
    - data (pd.DataFrame): The input time-series dataset.
    - target_particle (str): The target particle ('O3' or 'NO2') for which targets are created.
    - lag_days (int): Number of lag days to create features for (default 7).
    - sma_days (int): Window size for Simple Moving Average (default 7).
    - days_ahead (int): Number of days ahead to create target variables for (default 3).

    Returns:
    - X_train_scaled (pd.DataFrame): Scaled training features.
    - y_train_scaled (pd.DataFrame): Scaled training targets.
    - X_val_scaled (pd.DataFrame): Scaled validation features (365 days).
    - y_val_scaled (pd.DataFrame): Scaled validation targets (365 days).
    - X_test_scaled (pd.DataFrame): Scaled test features (365 days).
    - y_test_scaled (pd.DataFrame): Scaled test targets (365 days).
    """
    import warnings

    import numpy as np
    import pandas as pd
    from sklearn.preprocessing import StandardScaler

    warnings.filterwarnings("ignore")

    lag_features = [
        "NO2",
        "O3",
        "wind_speed",
        "mean_temp",
        "global_radiation",
        "minimum_visibility",
        "humidity",
    ]
    if target_particle == "NO2":
        lag_features = lag_features + ["percipitation", "pressure"]

    if target_particle not in ["O3", "NO2"]:
        raise ValueError("target_particle must be 'O3' or 'NO2'")

    data = data.copy()
    data["date"] = pd.to_datetime(data["date"])
    data = data.sort_values("date").reset_index(drop=True)

    # Extract 'weekday' and 'month' from 'date' if not present
    if "weekday" not in data.columns or data["weekday"].dtype == object:
        data["weekday"] = data["date"].dt.weekday  # Monday=0, Sunday=6
    if "month" not in data.columns:
        data["month"] = data["date"].dt.month  # 1 to 12

    # Create sine and cosine transformations for 'weekday' and 'month'
    data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
    data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
    data["month_sin"] = np.sin(
        2 * np.pi * (data["month"] - 1) / 12
    )  # Adjust month to 0-11
    data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)

    # Create lagged features for the specified lag days
    for feature in lag_features:
        for lag in range(1, lag_days + 1):
            data[f"{feature}_lag_{lag}"] = data[feature].shift(lag)

    # Create SMA features
    for feature in lag_features:
        data[f"{feature}_sma_{sma_days}"] = (
            data[feature].rolling(window=sma_days).mean()
        )

    # Create particle data (NO2 and O3) from the same time last year
    # Today last year
    data["O3_last_year"] = 0 # data["O3_last_year"] = data["O3"].shift(365)
    data["NO2_last_year"] = 0 # data["NO2_last_year"] = data["NO2"].shift(365)

    # 7 days before today last year
    for i in range(1, lag_days + 1):
        data[f"O3_last_year_{i}_days_before"] = 0 # data["O3"].shift(365 + i)
        data[f"NO2_last_year_{i}_days_before"] = 0 # data["NO2"].shift(365 + i)

    # 3 days after today last year
    data["O3_last_year_3_days_after"] = 0 # data["O3"].shift(365 - 3)
    data["NO2_last_year_3_days_after"] = 0 # data["NO2"].shift(365 - 3)

    # Calculate the number of rows before dropping missing values
    rows_before = data.shape[0]

    # Drop missing values
    data = data.dropna().reset_index(drop=True)

    # Calculate the number of rows after dropping missing values
    rows_after = data.shape[0]

    # Calculate and print the number of rows dropped
    rows_dropped = rows_before - rows_after
    print(f"Number of rows with missing values dropped: {rows_dropped}")

    # Ensure the data is sorted by date in ascending order
    data = data.sort_values("date").reset_index(drop=True)

    # Define feature columns
    exclude_cols = ["date", "weekday", "month"]
    feature_cols = [col for col in data.columns if col not in exclude_cols]

    # Split features and targets
    x = data[feature_cols]


    # Initialize scalers
    feature_scaler = joblib.load(f"scalers/feature_scaler_{target_particle}.joblib")

    # Fit the scalers on the training data
    X_scaled = feature_scaler.fit_transform(x)

    # Convert scaled data back to DataFrame for consistency
    X_scaled = pd.DataFrame(
        X_scaled, columns=feature_cols, index=x.index
    )

    return X_scaled