File size: 6,411 Bytes
1d3c9ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4930a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d3c9ee
f4930a4
1d3c9ee
 
 
 
 
f4930a4
 
1d3c9ee
 
 
 
 
 
 
7052bfa
 
 
 
 
1d3c9ee
3dd6a8c
 
 
 
 
 
 
 
 
 
f4930a4
3dd6a8c
1d3c9ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4930a4
3dd6a8c
7052bfa
 
 
 
3dd6a8c
 
1d3c9ee
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import codecs
import csv
import http.client
import os
import re
import sys
import urllib.request
from datetime import date, timedelta
from io import StringIO

import pandas as pd

WEATHER_DATA_FILE = "weather_data.csv"
POLLUTION_DATA_FILE = "pollution_data.csv"


def update_weather_data():
    today = date.today().isoformat()

    if os.path.exists(WEATHER_DATA_FILE):
        df = pd.read_csv(WEATHER_DATA_FILE)
        last_date = pd.to_datetime(df["date"]).max()
        start_date = (last_date + timedelta(1)).isoformat()
    else:
        df = pd.DataFrame()
        start_date = (date.today() - timedelta(7)).isoformat()

    try:
        ResultBytes = urllib.request.urlopen(
            f"https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Utrecht/{start_date}/{today}?unitGroup=metric&elements=datetime%2Cwindspeed%2Ctemp%2Csolarradiation%2Cprecip%2Cpressure%2Cvisibility%2Chumidity&include=days&key=7Y6AY56M6RWVNHQ3SAVHNJWFS&maxStations=1&contentType=csv"
        )
        CSVText = csv.reader(codecs.iterdecode(ResultBytes, "utf-8"))

        new_data = pd.DataFrame(list(CSVText))
        new_data.columns = new_data.iloc[0]
        new_data = new_data[1:]
        new_data = new_data.rename(columns={"datetime": "date"})

        updated_df = pd.concat([df, new_data], ignore_index=True)
        updated_df.drop_duplicates(subset="date", keep="last", inplace=True)
        updated_df.to_csv(WEATHER_DATA_FILE, index=False)

    except urllib.error.HTTPError as e:
        ErrorInfo = e.read().decode()
        print("Error code: ", e.code, ErrorInfo)
        sys.exit()
    except urllib.error.URLError as e:
        ErrorInfo = e.read().decode()
        print("Error code: ", e.code, ErrorInfo)
        sys.exit()


def update_pollution_data():
    O3 = []
    NO2 = []
    particles = ["NO2", "O3"]
    stations = ["NL10636", "NL10639", "NL10643"]
    all_dataframes = []
    today = date.today().isoformat() + "T09:00:00Z"
    yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"

    if os.path.exists(POLLUTION_DATA_FILE):
        existing_data = pd.read_csv(POLLUTION_DATA_FILE)
        last_date = pd.to_datetime(existing_data["date"]).max()
        if last_date >= pd.Timestamp(date.today()):
            print("Data is already up to date.")
            return

    # Only pull data for today if not already updated
    for particle in particles:
        for station in stations:
            conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
            payload = ""
            headers = {}
            conn.request(
                "GET",
                f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}",
                payload,
                headers,
            )
            res = conn.getresponse()
            data = res.read()
            decoded_data = data.decode("utf-8")
            df = pd.read_csv(StringIO(decoded_data))
            df = df.filter(like="value")
            all_dataframes.append(df)
        combined_data = pd.concat(all_dataframes, ignore_index=True)
        values = []

        for row in combined_data:
            cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", row)
            if cleaned_value:
                values.append(float(cleaned_value[0]))

        if values:
            avg = sum(values) / len(values)
            if particle == "NO2":
                NO2.append(avg)
            else:
                O3.append(avg)

    new_data = pd.DataFrame(
        {
            "date": [date.today()],
            "NO2": NO2,
            "O3": O3,
        }
    )

    updated_data = pd.concat([existing_data, new_data], ignore_index=True)
    updated_data.drop_duplicates(subset="date", keep="last", inplace=True)

    updated_data.to_csv(POLLUTION_DATA_FILE, index=False)


def get_combined_data():

    weather_df = pd.read_csv(WEATHER_DATA_FILE)
    
    today = pd.Timestamp.now().normalize()
    seven_days_ago = today - pd.Timedelta(days=7)
    weather_df["date"] = pd.to_datetime(weather_df["date"])
    weather_df = weather_df[(weather_df["date"] >= seven_days_ago) & (weather_df["date"] <= today)]

    weather_df.insert(1, "NO2", None)
    weather_df.insert(2, "O3", None)
    weather_df.insert(10, "weekday", None)
    columns = list(weather_df.columns)
    columns.insert(3, columns.pop(6))
    weather_df = weather_df[columns]
    columns.insert(5, columns.pop(9))
    weather_df = weather_df[columns]
    columns.insert(9, columns.pop(6))
    weather_df = weather_df[columns]

    combined_df = weather_df

    # Apply scaling and renaming similar to the scale function from previous code
    combined_df = combined_df.rename(
        columns={
            "date": "date",
            "windspeed": "wind_speed",
            "temp": "mean_temp",
            "solarradiation": "global_radiation",
            "precip": "percipitation",
            "sealevelpressure": "pressure",
            "visibility": "minimum_visibility",
        }
    )

    combined_df["date"] = pd.to_datetime(combined_df["date"])
    combined_df["weekday"] = combined_df["date"].dt.day_name()

    combined_df["wind_speed"] = (combined_df["wind_speed"] / 3.6) * 10
    combined_df["mean_temp"] = combined_df["mean_temp"] * 10
    combined_df["minimum_visibility"] = combined_df["minimum_visibility"] * 10
    combined_df["percipitation"] = combined_df["percipitation"] * 10
    combined_df["pressure"] = combined_df["pressure"] * 10

    combined_df["wind_speed"] = combined_df["wind_speed"].astype(int)
    combined_df["mean_temp"] = combined_df["mean_temp"].astype(int)
    combined_df["minimum_visibility"] = combined_df["minimum_visibility"].astype(int)
    combined_df["percipitation"] = combined_df["percipitation"].astype(int)
    combined_df["pressure"] = combined_df["pressure"].astype(int)
    combined_df["humidity"] = combined_df["humidity"].astype(int)
    combined_df["global_radiation"] = combined_df["global_radiation"].astype(int)

    pollution_df = pd.read_csv(POLLUTION_DATA_FILE)

    pollution_df["date"] = pd.to_datetime(pollution_df["date"])
    pollution_df = pollution_df[(pollution_df["date"] >= seven_days_ago) & (pollution_df["date"] <= today)]

    combined_df["NO2"] = pollution_df["NO2"]
    combined_df["O3"] = pollution_df["O3"]

    return combined_df