File size: 16,965 Bytes
00db68b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
from typing import (Generic, Iterable, Iterator, List, Optional, Sequence,
Sized, TypeVar, Union)
import cv2
import numpy as np
import torch
from PIL import Image
from torch.utils.data import BatchSampler, Dataset, Sampler
ASPECT_RATIO_512 = {
'0.25': [256.0, 1024.0], '0.26': [256.0, 992.0], '0.27': [256.0, 960.0], '0.28': [256.0, 928.0],
'0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
'0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
'0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
'0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
'1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
'1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
'1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
'2.5': [800.0, 320.0], '2.89': [832.0, 288.0], '3.0': [864.0, 288.0], '3.11': [896.0, 288.0],
'3.62': [928.0, 256.0], '3.75': [960.0, 256.0], '3.88': [992.0, 256.0], '4.0': [1024.0, 256.0]
}
ASPECT_RATIO_RANDOM_CROP_512 = {
'0.42': [320.0, 768.0], '0.5': [352.0, 704.0],
'0.57': [384.0, 672.0], '0.68': [416.0, 608.0], '0.78': [448.0, 576.0], '0.88': [480.0, 544.0],
'0.94': [480.0, 512.0], '1.0': [512.0, 512.0], '1.07': [512.0, 480.0],
'1.13': [544.0, 480.0], '1.29': [576.0, 448.0], '1.46': [608.0, 416.0], '1.75': [672.0, 384.0],
'2.0': [704.0, 352.0], '2.4': [768.0, 320.0]
}
ASPECT_RATIO_RANDOM_CROP_PROB = [
1, 2,
4, 4, 4, 4,
8, 8, 8,
4, 4, 4, 4,
2, 1
]
ASPECT_RATIO_RANDOM_CROP_PROB = np.array(ASPECT_RATIO_RANDOM_CROP_PROB) / sum(ASPECT_RATIO_RANDOM_CROP_PROB)
def get_closest_ratio(height: float, width: float, ratios: dict = ASPECT_RATIO_512):
aspect_ratio = height / width
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
return ratios[closest_ratio], float(closest_ratio)
def get_image_size_without_loading(path):
with Image.open(path) as img:
return img.size # (width, height)
class RandomSampler(Sampler[int]):
r"""Samples elements randomly. If without replacement, then sample from a shuffled dataset.
If with replacement, then user can specify :attr:`num_samples` to draw.
Args:
data_source (Dataset): dataset to sample from
replacement (bool): samples are drawn on-demand with replacement if ``True``, default=``False``
num_samples (int): number of samples to draw, default=`len(dataset)`.
generator (Generator): Generator used in sampling.
"""
data_source: Sized
replacement: bool
def __init__(self, data_source: Sized, replacement: bool = False,
num_samples: Optional[int] = None, generator=None) -> None:
self.data_source = data_source
self.replacement = replacement
self._num_samples = num_samples
self.generator = generator
self._pos_start = 0
if not isinstance(self.replacement, bool):
raise TypeError(f"replacement should be a boolean value, but got replacement={self.replacement}")
if not isinstance(self.num_samples, int) or self.num_samples <= 0:
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={self.num_samples}")
@property
def num_samples(self) -> int:
# dataset size might change at runtime
if self._num_samples is None:
return len(self.data_source)
return self._num_samples
def __iter__(self) -> Iterator[int]:
n = len(self.data_source)
if self.generator is None:
seed = int(torch.empty((), dtype=torch.int64).random_().item())
generator = torch.Generator()
generator.manual_seed(seed)
else:
generator = self.generator
if self.replacement:
for _ in range(self.num_samples // 32):
yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).tolist()
yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator).tolist()
else:
for _ in range(self.num_samples // n):
xx = torch.randperm(n, generator=generator).tolist()
if self._pos_start >= n:
self._pos_start = 0
print("xx top 10", xx[:10], self._pos_start)
for idx in range(self._pos_start, n):
yield xx[idx]
self._pos_start = (self._pos_start + 1) % n
self._pos_start = 0
yield from torch.randperm(n, generator=generator).tolist()[:self.num_samples % n]
def __len__(self) -> int:
return self.num_samples
class AspectRatioBatchImageSampler(BatchSampler):
"""A sampler wrapper for grouping images with similar aspect ratio into a same batch.
Args:
sampler (Sampler): Base sampler.
dataset (Dataset): Dataset providing data information.
batch_size (int): Size of mini-batch.
drop_last (bool): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size``.
aspect_ratios (dict): The predefined aspect ratios.
"""
def __init__(
self,
sampler: Sampler,
dataset: Dataset,
batch_size: int,
train_folder: str = None,
aspect_ratios: dict = ASPECT_RATIO_512,
drop_last: bool = False,
config=None,
**kwargs
) -> None:
if not isinstance(sampler, Sampler):
raise TypeError('sampler should be an instance of ``Sampler``, '
f'but got {sampler}')
if not isinstance(batch_size, int) or batch_size <= 0:
raise ValueError('batch_size should be a positive integer value, '
f'but got batch_size={batch_size}')
self.sampler = sampler
self.dataset = dataset
self.train_folder = train_folder
self.batch_size = batch_size
self.aspect_ratios = aspect_ratios
self.drop_last = drop_last
self.config = config
# buckets for each aspect ratio
self._aspect_ratio_buckets = {ratio: [] for ratio in aspect_ratios}
# [str(k) for k, v in aspect_ratios]
self.current_available_bucket_keys = list(aspect_ratios.keys())
def __iter__(self):
for idx in self.sampler:
try:
image_dict = self.dataset[idx]
width, height = image_dict.get("width", None), image_dict.get("height", None)
if width is None or height is None:
image_id, name = image_dict['file_path'], image_dict['text']
if self.train_folder is None:
image_dir = image_id
else:
image_dir = os.path.join(self.train_folder, image_id)
width, height = get_image_size_without_loading(image_dir)
ratio = height / width # self.dataset[idx]
else:
height = int(height)
width = int(width)
ratio = height / width # self.dataset[idx]
except Exception as e:
print(e)
continue
# find the closest aspect ratio
closest_ratio = min(self.aspect_ratios.keys(), key=lambda r: abs(float(r) - ratio))
if closest_ratio not in self.current_available_bucket_keys:
continue
bucket = self._aspect_ratio_buckets[closest_ratio]
bucket.append(idx)
# yield a batch of indices in the same aspect ratio group
if len(bucket) == self.batch_size:
yield bucket[:]
del bucket[:]
class AspectRatioBatchSampler(BatchSampler):
"""A sampler wrapper for grouping images with similar aspect ratio into a same batch.
Args:
sampler (Sampler): Base sampler.
dataset (Dataset): Dataset providing data information.
batch_size (int): Size of mini-batch.
drop_last (bool): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size``.
aspect_ratios (dict): The predefined aspect ratios.
"""
def __init__(
self,
sampler: Sampler,
dataset: Dataset,
batch_size: int,
video_folder: str = None,
train_data_format: str = "webvid",
aspect_ratios: dict = ASPECT_RATIO_512,
drop_last: bool = False,
config=None,
**kwargs
) -> None:
if not isinstance(sampler, Sampler):
raise TypeError('sampler should be an instance of ``Sampler``, '
f'but got {sampler}')
if not isinstance(batch_size, int) or batch_size <= 0:
raise ValueError('batch_size should be a positive integer value, '
f'but got batch_size={batch_size}')
self.sampler = sampler
self.dataset = dataset
self.video_folder = video_folder
self.train_data_format = train_data_format
self.batch_size = batch_size
self.aspect_ratios = aspect_ratios
self.drop_last = drop_last
self.config = config
# buckets for each aspect ratio
self._aspect_ratio_buckets = {ratio: [] for ratio in aspect_ratios}
# [str(k) for k, v in aspect_ratios]
self.current_available_bucket_keys = list(aspect_ratios.keys())
def __iter__(self):
for idx in self.sampler:
try:
video_dict = self.dataset[idx]
width, more = video_dict.get("width", None), video_dict.get("height", None)
if width is None or height is None:
if self.train_data_format == "normal":
video_id, name = video_dict['file_path'], video_dict['text']
if self.video_folder is None:
video_dir = video_id
else:
video_dir = os.path.join(self.video_folder, video_id)
else:
videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir']
video_dir = os.path.join(self.video_folder, f"{videoid}.mp4")
cap = cv2.VideoCapture(video_dir)
# 获取视频尺寸
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 浮点数转换为整数
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 浮点数转换为整数
ratio = height / width # self.dataset[idx]
else:
height = int(height)
width = int(width)
ratio = height / width # self.dataset[idx]
except Exception as e:
print(e)
continue
# find the closest aspect ratio
closest_ratio = min(self.aspect_ratios.keys(), key=lambda r: abs(float(r) - ratio))
if closest_ratio not in self.current_available_bucket_keys:
continue
bucket = self._aspect_ratio_buckets[closest_ratio]
bucket.append(idx)
# yield a batch of indices in the same aspect ratio group
if len(bucket) == self.batch_size:
yield bucket[:]
del bucket[:]
class AspectRatioBatchImageVideoSampler(BatchSampler):
"""A sampler wrapper for grouping images with similar aspect ratio into a same batch.
Args:
sampler (Sampler): Base sampler.
dataset (Dataset): Dataset providing data information.
batch_size (int): Size of mini-batch.
drop_last (bool): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size``.
aspect_ratios (dict): The predefined aspect ratios.
"""
def __init__(self,
sampler: Sampler,
dataset: Dataset,
batch_size: int,
train_folder: str = None,
aspect_ratios: dict = ASPECT_RATIO_512,
drop_last: bool = False
) -> None:
if not isinstance(sampler, Sampler):
raise TypeError('sampler should be an instance of ``Sampler``, '
f'but got {sampler}')
if not isinstance(batch_size, int) or batch_size <= 0:
raise ValueError('batch_size should be a positive integer value, '
f'but got batch_size={batch_size}')
self.sampler = sampler
self.dataset = dataset
self.train_folder = train_folder
self.batch_size = batch_size
self.aspect_ratios = aspect_ratios
self.drop_last = drop_last
# buckets for each aspect ratio
self.current_available_bucket_keys = list(aspect_ratios.keys())
self.bucket = {
'image':{ratio: [] for ratio in aspect_ratios},
'video':{ratio: [] for ratio in aspect_ratios}
}
def __iter__(self):
for idx in self.sampler:
content_type = self.dataset[idx].get('type', 'image')
if content_type == 'image':
try:
image_dict = self.dataset[idx]
width, height = image_dict.get("width", None), image_dict.get("height", None)
if width is None or height is None:
image_id, name = image_dict['file_path'], image_dict['text']
if self.train_folder is None:
image_dir = image_id
else:
image_dir = os.path.join(self.train_folder, image_id)
width, height = get_image_size_without_loading(image_dir)
ratio = height / width # self.dataset[idx]
else:
height = int(height)
width = int(width)
ratio = height / width # self.dataset[idx]
except Exception as e:
print(e)
continue
# find the closest aspect ratio
closest_ratio = min(self.aspect_ratios.keys(), key=lambda r: abs(float(r) - ratio))
if closest_ratio not in self.current_available_bucket_keys:
continue
bucket = self.bucket['image'][closest_ratio]
bucket.append(idx)
# yield a batch of indices in the same aspect ratio group
if len(bucket) == self.batch_size:
yield bucket[:]
del bucket[:]
else:
try:
video_dict = self.dataset[idx]
width, height = video_dict.get("width", None), video_dict.get("height", None)
if width is None or height is None:
video_id, name = video_dict['file_path'], video_dict['text']
if self.train_folder is None:
video_dir = video_id
else:
video_dir = os.path.join(self.train_folder, video_id)
cap = cv2.VideoCapture(video_dir)
# 获取视频尺寸
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 浮点数转换为整数
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 浮点数转换为整数
ratio = height / width # self.dataset[idx]
else:
height = int(height)
width = int(width)
ratio = height / width # self.dataset[idx]
except Exception as e:
print(e)
continue
# find the closest aspect ratio
closest_ratio = min(self.aspect_ratios.keys(), key=lambda r: abs(float(r) - ratio))
if closest_ratio not in self.current_available_bucket_keys:
continue
bucket = self.bucket['video'][closest_ratio]
bucket.append(idx)
# yield a batch of indices in the same aspect ratio group
if len(bucket) == self.batch_size:
yield bucket[:]
del bucket[:] |