Spaces:
Paused
Paused
File size: 31,949 Bytes
4e193ad 29b1ac3 49fb757 29b1ac3 64ae49b 29b1ac3 9a3a044 da2c6ed 206a65e da2c6ed 29b1ac3 49fb757 29b1ac3 f6979f1 a6102b0 29b1ac3 4865d21 49fb757 9a3a044 29b1ac3 f53a13f 29b1ac3 f53a13f 29b1ac3 7e05382 29b1ac3 7e05382 a6102b0 7e05382 29b1ac3 65712c4 f53a13f 65712c4 9f16189 69ccc34 a6102b0 69ccc34 65712c4 9a3a044 65712c4 9a3a044 65712c4 9a3a044 65712c4 9a3a044 65712c4 7e05382 29b1ac3 c058191 f6979f1 9a3a044 c058191 29b1ac3 7e05382 3482478 9a3a044 29b1ac3 9a3a044 f7e1ed4 e33167d da2c6ed e33167d 9c3653d da2c6ed 9c3653d da2c6ed 206a65e da2c6ed 9c3653d da2c6ed 9c3653d 29b1ac3 7e05382 f6979f1 3482478 f7e1ed4 29b1ac3 49fb757 9a3a044 29b1ac3 f7e1ed4 29b1ac3 f7e1ed4 29b1ac3 9c3653d 29b1ac3 f6979f1 9c3653d 9f16189 69ccc34 29b1ac3 9f16189 29b1ac3 9c3653d 9a3a044 9f16189 69ccc34 9f16189 29b1ac3 9f16189 29b1ac3 69ccc34 a6102b0 69ccc34 416a567 f7e1ed4 416a567 9a3a044 9c3653d 9a3a044 f6979f1 9a3a044 f6979f1 9a3a044 f6979f1 9a3a044 f6979f1 e33167d f6979f1 e33167d f6979f1 e33167d f6979f1 9a3a044 f6979f1 9a3a044 f6979f1 29b1ac3 49fb757 f7e1ed4 49fb757 f7e1ed4 195b95a 29b1ac3 7e05382 195b95a 8695ba2 f7e1ed4 8695ba2 f7e1ed4 8695ba2 f7e1ed4 3482478 29b1ac3 4865d21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
import os
import threading
import logging
import uuid
import shutil
import json
import tempfile
import glob
from flask import Flask, request as flask_request, make_response
import dash
from dash import dcc, html, Input, Output, State, callback_context, no_update
import dash_bootstrap_components as dbc
import openai
import base64
import datetime
from werkzeug.utils import secure_filename
import numpy as np
import io
import PyPDF2
import docx
import openpyxl
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(threadName)s %(message)s")
logger = logging.getLogger("AskTricare")
app_flask = Flask(__name__)
SESSION_DATA = {}
SESSION_LOCKS = {}
SESSION_DIR_BASE = os.path.join(tempfile.gettempdir(), "asktricare_sessions")
os.makedirs(SESSION_DIR_BASE, exist_ok=True)
openai.api_key = os.environ.get("OPENAI_API_KEY")
EMBEDDING_INDEX = {}
EMBEDDING_TEXTS = {}
EMBEDDING_MODEL = "text-embedding-ada-002"
def get_session_id():
sid = flask_request.cookies.get("asktricare_session_id")
if not sid:
sid = str(uuid.uuid4())
return sid
def get_session_dir(session_id):
d = os.path.join(SESSION_DIR_BASE, session_id)
os.makedirs(d, exist_ok=True)
return d
def get_session_lock(session_id):
if session_id not in SESSION_LOCKS:
SESSION_LOCKS[session_id] = threading.Lock()
return SESSION_LOCKS[session_id]
def get_session_state(session_id):
if session_id not in SESSION_DATA:
SESSION_DATA[session_id] = {
"messages": [],
"uploads": [],
"created": datetime.datetime.utcnow().isoformat(),
"streaming": False,
"stream_buffer": ""
}
return SESSION_DATA[session_id]
def save_session_state(session_id):
state = get_session_state(session_id)
d = get_session_dir(session_id)
with open(os.path.join(d, "state.json"), "w") as f:
json.dump(state, f)
def load_session_state(session_id):
d = get_session_dir(session_id)
path = os.path.join(d, "state.json")
if os.path.exists(path):
with open(path, "r") as f:
SESSION_DATA[session_id] = json.load(f)
def load_system_prompt():
prompt_path = os.path.join(os.getcwd(), "system_prompt.txt")
try:
with open(prompt_path, "r", encoding="utf-8") as f:
return f.read().strip()
except Exception as e:
logger.error(f"Failed to load system prompt: {e}")
return "You are Ask Tricare, a helpful assistant for TRICARE health benefits. Respond conversationally, and cite relevant sources when possible. If you do not know, say so."
def embed_docs_folder():
global EMBEDDING_INDEX, EMBEDDING_TEXTS
docs_folder = os.path.join(os.getcwd(), "docs")
if not os.path.isdir(docs_folder):
logger.warning(f"Docs folder '{docs_folder}' does not exist. Skipping embedding.")
return
doc_files = []
for ext in ("*.txt", "*.md", "*.pdf"):
doc_files.extend(glob.glob(os.path.join(docs_folder, ext)))
for doc_path in doc_files:
fname = os.path.basename(doc_path)
if fname in EMBEDDING_INDEX:
continue
try:
with open(doc_path, "r", encoding="utf-8", errors="ignore") as f:
text = f.read()
if not text.strip():
continue
chunk = text[:4000]
response = openai.Embedding.create(
input=[chunk],
model=EMBEDDING_MODEL
)
embedding = response['data'][0]['embedding']
EMBEDDING_INDEX[fname] = embedding
EMBEDDING_TEXTS[fname] = chunk
logger.info(f"Embedded doc: {fname}")
except Exception as e:
logger.error(f"Embedding failed for {fname}: {e}")
embed_docs_folder()
def embed_user_doc(session_id, filename, text):
session_dir = get_session_dir(session_id)
if not text.strip():
return
try:
chunk = text[:4000]
response = openai.Embedding.create(
input=[chunk],
model=EMBEDDING_MODEL
)
embedding = response['data'][0]['embedding']
user_embeds_path = os.path.join(session_dir, "user_embeds.json")
if os.path.exists(user_embeds_path):
with open(user_embeds_path, "r") as f:
user_embeds = json.load(f)
else:
user_embeds = {"embeddings": [], "texts": [], "filenames": []}
user_embeds["embeddings"].append(embedding)
user_embeds["texts"].append(chunk)
user_embeds["filenames"].append(filename)
with open(user_embeds_path, "w") as f:
json.dump(user_embeds, f)
logger.info(f"Session {session_id}: Embedded user doc {filename}")
except Exception as e:
logger.error(f"Session {session_id}: Failed to embed user doc {filename}: {e}")
def get_user_embeddings(session_id):
session_dir = get_session_dir(session_id)
user_embeds_path = os.path.join(session_dir, "user_embeds.json")
if os.path.exists(user_embeds_path):
with open(user_embeds_path, "r") as f:
d = json.load(f)
embeds = np.array(d.get("embeddings", []))
texts = d.get("texts", [])
filenames = d.get("filenames", [])
return embeds, texts, filenames
return np.array([]), [], []
def semantic_search(query, embed_matrix, texts, filenames, top_k=2):
if len(embed_matrix) == 0:
return []
try:
q_embed = openai.Embedding.create(input=[query], model=EMBEDDING_MODEL)["data"][0]["embedding"]
q_embed = np.array(q_embed)
embed_matrix = np.array(embed_matrix)
scores = np.dot(embed_matrix, q_embed) / (np.linalg.norm(embed_matrix, axis=1) * np.linalg.norm(q_embed) + 1e-8)
idx = np.argsort(scores)[::-1][:top_k]
results = []
for i in idx:
results.append({"filename": filenames[i], "text": texts[i], "score": float(scores[i])})
return results
except Exception as e:
logger.error(f"Semantic search error: {e}")
return []
app = dash.Dash(
__name__,
server=app_flask,
suppress_callback_exceptions=True,
external_stylesheets=[dbc.themes.BOOTSTRAP, "/assets/custom.css"],
update_title="Ask Tricare"
)
def chat_message_card(msg, is_user):
align = "flex-end" if is_user else "flex-start"
color = "primary" if is_user else "secondary"
avatar = "🧑" if is_user else "🤖"
return html.Div(
dbc.Card(
dbc.CardBody([
html.Div([
html.Span(avatar, style={"fontSize": "2rem"}),
html.Span(msg, style={"whiteSpace": "pre-wrap", "marginLeft": "0.75rem", "overflowWrap": "break-word", "wordBreak": "break-word"})
], style={"display": "flex", "alignItems": "center"})
]),
className=f"mb-2 ms-3 me-3",
color=color,
inverse=is_user,
style={"maxWidth": "80%"}
),
style={"display": "flex", "justifyContent": align, "width": "100%"}
)
def uploaded_file_card(filename, is_img):
ext = os.path.splitext(filename)[1].lower()
icon = "🖼️" if is_img else "📄"
return dbc.Card(
dbc.CardBody([
html.Span(icon, style={"fontSize": "2rem", "marginRight": "0.5rem"}),
html.Span(filename)
]),
className="mb-2",
color="tertiary"
)
def disclaimer_card():
return dbc.Card(
dbc.CardBody([
html.H5("Disclaimer", className="card-title"),
html.P("This information is not private. Do not send PII or PHI. For official guidance visit the Tricare website.", style={"fontSize": "0.95rem"})
]),
className="mb-2"
)
def left_navbar_static():
return html.Div([
html.H3("Ask Tricare", className="mb-3 mt-3", style={"fontWeight": "bold"}),
disclaimer_card(),
dcc.Upload(
id="file-upload",
children=dbc.Button("Upload Document/Image", color="secondary", className="mb-2", style={"width": "100%"}),
multiple=True,
style={"width": "100%"}
),
html.Div(id="upload-list"),
html.Hr()
], style={"padding": "1rem", "backgroundColor": "#f8f9fa", "height": "100vh", "overflowY": "auto"})
def chat_box_card():
return dbc.Card(
dbc.CardBody([
html.Div(
id="chat-window-container",
children=[
html.Div(id="chat-window", style={"width": "100%"})
],
style={
"height": "70vh",
"overflowY": "auto",
"overflowX": "hidden",
"backgroundColor": "#fff",
"padding": "0.5rem",
"borderRadius": "0.5rem"
}
)
]),
className="mt-3",
style={
"height": "72vh",
"overflowY": "hidden",
"overflowX": "hidden"
}
)
def user_input_card():
return dbc.Card(
dbc.CardBody([
html.Div([
dcc.Textarea(
id="user-input",
placeholder="Type your question...",
style={"width": "100%", "height": "60px", "resize": "vertical", "wordWrap": "break-word"},
wrap="soft",
maxLength=1000,
n_blur=0,
),
dcc.Store(id="enter-triggered", data=False),
html.Div([
dbc.Button("Send", id="send-btn", color="primary", className="mt-2 me-2", style={"minWidth": "100px"}),
], style={"float": "right", "display": "flex", "gap": "0.5rem"}),
dcc.Store(id="user-input-store", data="", storage_type="session"),
html.Button(id='hidden-send', style={'display': 'none'})
], style={"marginTop": "1rem"}),
html.Div(id="error-message", style={"color": "#bb2124", "marginTop": "0.5rem"}),
dcc.Store(id="should-clear-input", data=False)
])
)
def right_main_static():
return html.Div([
chat_box_card(),
user_input_card(),
dcc.Loading(id="loading", type="default", fullscreen=False, style={"position": "absolute", "top": "5%", "left": "50%"}),
dcc.Interval(id="stream-interval", interval=400, n_intervals=0, disabled=True, max_intervals=1000),
dcc.Store(id="client-question", data="")
], style={"padding": "1rem", "backgroundColor": "#fff", "height": "100vh", "overflowY": "auto"})
app.layout = html.Div([
dcc.Store(id="session-id", storage_type="local"),
dcc.Location(id="url"),
html.Div([
html.Div(left_navbar_static(), id='left-navbar', style={"width": "30vw", "height": "100vh", "position": "fixed", "left": 0, "top": 0, "zIndex": 2, "overflowY": "auto"}),
html.Div(right_main_static(), id='right-main', style={"marginLeft": "30vw", "width": "70vw", "overflowY": "auto"})
], style={"display": "flex"}),
dcc.Store(id="clear-input", data=False),
dcc.Store(id="scroll-bottom", data=0),
dcc.Store(id="enter-pressed", data=False)
])
app.clientside_callback(
"""
function(n, value) {
var ta = document.getElementById('user-input');
if (!ta) return window.dash_clientside.no_update;
if (!window._asktricare_enter_handler) {
ta.addEventListener('keydown', function(e) {
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
var btn = document.getElementById('hidden-send');
if (btn) btn.click();
}
});
window._asktricare_enter_handler = true;
}
return window.dash_clientside.no_update;
}
""",
Output('enter-pressed', 'data'),
Input('user-input', 'n_blur'),
State('user-input', 'value')
)
# Clientside callback to scroll chat window to bottom when scroll-bottom is incremented
app.clientside_callback(
"""
function(scrollIndex) {
var chatContainer = document.getElementById('chat-window-container');
if (chatContainer) {
chatContainer.scrollTop = chatContainer.scrollHeight;
}
return null;
}
""",
Output('clear-input', 'data'), # dummy output
Input('scroll-bottom', 'data')
)
def _is_supported_doc(filename):
ext = os.path.splitext(filename)[1].lower()
return ext in [".txt", ".pdf", ".md", ".docx", ".xlsx"]
def _extract_text_from_upload(filepath, ext):
try:
if ext in [".txt", ".md"]:
with open(filepath, "r", encoding="utf-8", errors="ignore") as f:
text = f.read()
return text
elif ext == ".pdf":
try:
text = ""
with open(filepath, "rb") as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
return text
except Exception as e:
logger.error(f"Error reading PDF {filepath}: {e}")
return ""
elif ext == ".docx":
try:
doc = docx.Document(filepath)
paragraphs = [p.text for p in doc.paragraphs if p.text.strip()]
return "\n".join(paragraphs)
except Exception as e:
logger.error(f"Error reading DOCX {filepath}: {e}")
return ""
elif ext == ".xlsx":
try:
wb = openpyxl.load_workbook(filepath, read_only=True, data_only=True)
text_rows = []
for ws in wb.worksheets:
for row in ws.iter_rows(values_only=True):
row_strs = [str(cell) for cell in row if cell is not None]
if any(row_strs):
text_rows.append("\t".join(row_strs))
return "\n".join(text_rows)
except Exception as e:
logger.error(f"Error reading XLSX {filepath}: {e}")
return ""
else:
return ""
except Exception as e:
logger.error(f"Error extracting text from {filepath}: {e}")
return ""
@app.callback(
Output("session-id", "data"),
Input("url", "href"),
prevent_initial_call=False
)
def assign_session_id(_):
sid = get_session_id()
d = get_session_dir(sid)
load_session_state(sid)
logger.info(f"Assigned session id: {sid}")
return sid
@app.callback(
Output("upload-list", "children"),
Output("chat-window", "children"),
Output("error-message", "children"),
Output("stream-interval", "disabled"),
Output("stream-interval", "n_intervals"),
Output("user-input", "value"),
Output("scroll-bottom", "data"),
Input("session-id", "data"),
Input("send-btn", "n_clicks"),
Input("file-upload", "contents"),
Input("stream-interval", "n_intervals"),
Input('hidden-send', 'n_clicks'),
State("file-upload", "filename"),
State("user-input", "value"),
State("scroll-bottom", "data"),
prevent_initial_call=False
)
def main_callback(session_id, send_clicks, file_contents, stream_n, hidden_send_clicks, file_names, user_input, scroll_bottom):
trigger = callback_context.triggered[0]['prop_id'].split('.')[0] if callback_context.triggered else ""
session_id = session_id or get_session_id()
session_lock = get_session_lock(session_id)
with session_lock:
load_session_state(session_id)
state = get_session_state(session_id)
error = ""
start_streaming = False
uploads = state.get("uploads", [])
file_was_uploaded_and_sent = False
file_upload_message = None
doc_texts_to_send = []
if trigger == "file-upload" and file_contents and file_names:
uploads = []
file_upload_messages = []
if not isinstance(file_contents, list):
file_contents = [file_contents]
file_names = [file_names]
for c, n in zip(file_contents, file_names):
header, data = c.split(',', 1)
ext = os.path.splitext(n)[1].lower()
is_img = ext in [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
fname = secure_filename(f"{datetime.datetime.utcnow().strftime('%Y%m%d%H%M%S')}_{n}")
session_dir = get_session_dir(session_id)
fp = os.path.join(session_dir, fname)
with open(fp, "wb") as f:
f.write(base64.b64decode(data))
uploads.append({"name": fname, "is_img": is_img, "path": fp})
if _is_supported_doc(n) and not is_img:
text = _extract_text_from_upload(fp, ext)
if text.strip():
embed_user_doc(session_id, fname, text)
logger.info(f"Session {session_id}: Uploaded doc '{n}' embedded for user vector store")
preview = text[:1000]
file_upload_messages.append({
"role": "user",
"content": f"[Document uploaded: {n}]\n{preview if preview.strip() else '[No text extracted]'}"
})
doc_texts_to_send.append(text.strip())
else:
file_upload_messages.append({
"role": "user",
"content": f"[Document uploaded: {n}]\n[No text extracted]"
})
elif is_img:
file_upload_messages.append({
"role": "user",
"content": f"[Image uploaded: {n}]"
})
else:
file_upload_messages.append({
"role": "user",
"content": f"[File uploaded: {n}]"
})
state["uploads"].extend(uploads)
for msg in file_upload_messages:
state["messages"].append(msg)
save_session_state(session_id)
logger.info(f"Session {session_id}: Uploaded files {[u['name'] for u in uploads]}")
if doc_texts_to_send:
doc_question = "\n\n".join(doc_texts_to_send)
state["messages"].append({"role": "user", "content": doc_question})
state["streaming"] = True
state["stream_buffer"] = ""
save_session_state(session_id)
def run_stream_for_doc(session_id, messages, doc_question):
try:
system_prompt = load_system_prompt()
rag_chunks = []
try:
global_embeds = []
global_texts = []
global_fnames = []
for fname, emb in EMBEDDING_INDEX.items():
global_embeds.append(emb)
global_texts.append(EMBEDDING_TEXTS[fname])
global_fnames.append(fname)
global_rag = semantic_search(doc_question, global_embeds, global_texts, global_fnames, top_k=2)
if global_rag:
for r in global_rag:
rag_chunks.append(f"Global doc [{r['filename']}]:\n{r['text'][:1000]}")
user_embeds, user_texts, user_fnames = get_user_embeddings(session_id)
user_rag = semantic_search(doc_question, user_embeds, user_texts, user_fnames, top_k=2)
if user_rag:
for r in user_rag:
rag_chunks.append(f"User upload [{r['filename']}]:\n{r['text'][:1000]}")
except Exception as e:
logger.error(f"Session {session_id}: RAG error (doc upload): {e}")
context_block = ""
if rag_chunks:
context_block = "The following sources may help answer the question:\n\n" + "\n\n".join(rag_chunks) + "\n\n"
msg_list = [{"role": "system", "content": system_prompt}]
if context_block:
msg_list.append({"role": "system", "content": context_block})
for m in messages:
msg_list.append({"role": m["role"], "content": m["content"]})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=msg_list,
max_tokens=700,
temperature=0.2,
stream=True,
)
reply = ""
for chunk in response:
delta = chunk["choices"][0]["delta"]
content = delta.get("content", "")
if content:
reply += content
session_lock = get_session_lock(session_id)
with session_lock:
load_session_state(session_id)
state = get_session_state(session_id)
state["stream_buffer"] = reply
save_session_state(session_id)
session_lock = get_session_lock(session_id)
with session_lock:
load_session_state(session_id)
state = get_session_state(session_id)
state["messages"].append({"role": "assistant", "content": reply})
state["stream_buffer"] = ""
state["streaming"] = False
save_session_state(session_id)
logger.info(f"Session {session_id}: Assistant responded to doc upload")
except Exception as e:
session_lock = get_session_lock(session_id)
with session_lock:
load_session_state(session_id)
state = get_session_state(session_id)
state["streaming"] = False
state["stream_buffer"] = ""
save_session_state(session_id)
logger.error(f"Session {session_id}: Streaming error for doc upload: {e}")
threading.Thread(target=run_stream_for_doc, args=(session_id, list(state["messages"]), doc_question), daemon=True).start()
start_streaming = True
chat_history = state.get("messages", [])
uploads = state.get("uploads", [])
upload_cards = [uploaded_file_card(os.path.basename(f["name"]), f["is_img"]) for f in uploads]
chat_cards = []
for msg in chat_history:
chat_cards.append(chat_message_card(msg['content'], is_user=(msg['role'] == "user")))
return upload_cards, chat_cards, error, (not state.get("streaming", False)), 0, no_update, scroll_bottom+1
send_triggered = False
if trigger == "send-btn" or trigger == "hidden-send":
send_triggered = True
if send_triggered and user_input and user_input.strip():
question = user_input.strip()
state["messages"].append({"role": "user", "content": question})
state["streaming"] = True
state["stream_buffer"] = ""
save_session_state(session_id)
def run_stream(session_id, messages, question):
try:
system_prompt = load_system_prompt()
rag_chunks = []
try:
global_embeds = []
global_texts = []
global_fnames = []
for fname, emb in EMBEDDING_INDEX.items():
global_embeds.append(emb)
global_texts.append(EMBEDDING_TEXTS[fname])
global_fnames.append(fname)
global_rag = semantic_search(question, global_embeds, global_texts, global_fnames, top_k=2)
if global_rag:
for r in global_rag:
rag_chunks.append(f"Global doc [{r['filename']}]:\n{r['text'][:1000]}")
user_embeds, user_texts, user_fnames = get_user_embeddings(session_id)
user_rag = semantic_search(question, user_embeds, user_texts, user_fnames, top_k=2)
if user_rag:
for r in user_rag:
rag_chunks.append(f"User upload [{r['filename']}]:\n{r['text'][:1000]}")
except Exception as e:
logger.error(f"Session {session_id}: RAG error: {e}")
context_block = ""
if rag_chunks:
context_block = "The following sources may help answer the question:\n\n" + "\n\n".join(rag_chunks) + "\n\n"
msg_list = [{"role": "system", "content": system_prompt}]
if context_block:
msg_list.append({"role": "system", "content": context_block})
for m in messages:
msg_list.append({"role": m["role"], "content": m["content"]})
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=msg_list,
max_tokens=700,
temperature=0.2,
stream=True,
)
reply = ""
for chunk in response:
delta = chunk["choices"][0]["delta"]
content = delta.get("content", "")
if content:
reply += content
session_lock = get_session_lock(session_id)
with session_lock:
load_session_state(session_id)
state = get_session_state(session_id)
state["stream_buffer"] = reply
save_session_state(session_id)
session_lock = get_session_lock(session_id)
with session_lock:
load_session_state(session_id)
state = get_session_state(session_id)
state["messages"].append({"role": "assistant", "content": reply})
state["stream_buffer"] = ""
state["streaming"] = False
save_session_state(session_id)
logger.info(f"Session {session_id}: User: {question} | Assistant: {reply}")
except Exception as e:
session_lock = get_session_lock(session_id)
with session_lock:
load_session_state(session_id)
state = get_session_state(session_id)
state["streaming"] = False
state["stream_buffer"] = ""
save_session_state(session_id)
logger.error(f"Session {session_id}: Streaming error: {e}")
threading.Thread(target=run_stream, args=(session_id, list(state["messages"]), question), daemon=True).start()
start_streaming = True
if trigger == "stream-interval":
chat_history = state.get("messages", [])
chat_cards = []
for msg in chat_history:
chat_cards.append(chat_message_card(msg['content'], is_user=(msg['role'] == "user")))
if state.get("streaming", False):
if state.get("stream_buffer", ""):
chat_cards.append(chat_message_card(state["stream_buffer"], is_user=False))
upload_cards = [uploaded_file_card(os.path.basename(f["name"]), f["is_img"]) for f in state.get("uploads", [])]
return (
upload_cards,
chat_cards,
"",
False,
stream_n+1,
no_update,
scroll_bottom+1
)
else:
chat_cards = []
for msg in state.get("messages", []):
chat_cards.append(chat_message_card(msg['content'], is_user=(msg['role'] == "user")))
upload_cards = [uploaded_file_card(os.path.basename(f["name"]), f["is_img"]) for f in state.get("uploads", [])]
return (
upload_cards,
chat_cards,
"",
True,
0,
no_update,
scroll_bottom+1
)
chat_history = state.get("messages", [])
uploads = state.get("uploads", [])
upload_cards = [uploaded_file_card(os.path.basename(f["name"]), f["is_img"]) for f in uploads]
chat_cards = []
for msg in chat_history:
chat_cards.append(chat_message_card(msg['content'], is_user=(msg['role'] == "user")))
if trigger == "send-btn" or trigger == "hidden-send":
return upload_cards, chat_cards, error, (not state.get("streaming", False)), 0, "", scroll_bottom+1
elif trigger == "file-upload":
return upload_cards, chat_cards, error, (not state.get("streaming", False)), 0, no_update, scroll_bottom+1
else:
return upload_cards, chat_cards, error, (not state.get("streaming", False)), 0, no_update, scroll_bottom
@app_flask.after_request
def set_session_cookie(resp):
sid = flask_request.cookies.get("asktricare_session_id")
if not sid:
sid = str(uuid.uuid4())
resp.set_cookie("asktricare_session_id", sid, max_age=60*60*24*7, path="/")
return resp
def cleanup_sessions(max_age_hours=48):
now = datetime.datetime.utcnow()
for sid in os.listdir(SESSION_DIR_BASE):
d = os.path.join(SESSION_DIR_BASE, sid)
try:
state_path = os.path.join(d, "state.json")
if os.path.exists(state_path):
with open(state_path, "r") as f:
st = json.load(f)
created = st.get("created")
if created and (now - datetime.datetime.fromisoformat(created)).total_seconds() > max_age_hours * 3600:
shutil.rmtree(d)
logger.info(f"Cleaned up session {sid}")
except Exception as e:
logger.error(f"Cleanup error for {sid}: {e}")
try:
import torch
if torch.cuda.is_available():
torch.set_default_tensor_type(torch.cuda.FloatTensor)
logger.info("CUDA GPU detected and configured.")
except Exception as e:
logger.warning(f"CUDA config failed: {e}")
if __name__ == '__main__':
print("Starting the Dash application...")
app.run(debug=True, host='0.0.0.0', port=7860, threaded=True)
print("Dash application has finished running.") |