File size: 31,949 Bytes
4e193ad
29b1ac3
 
 
 
 
 
49fb757
29b1ac3
 
64ae49b
29b1ac3
 
 
 
 
9a3a044
da2c6ed
 
206a65e
da2c6ed
 
 
29b1ac3
 
 
 
 
 
 
 
 
 
 
49fb757
 
 
 
29b1ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6979f1
 
a6102b0
29b1ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4865d21
 
 
 
 
 
 
 
 
49fb757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3a044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b1ac3
 
 
 
 
 
 
 
 
f53a13f
29b1ac3
 
f53a13f
 
 
 
 
 
 
 
 
 
 
 
 
 
29b1ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e05382
29b1ac3
7e05382
 
 
 
 
 
 
 
 
a6102b0
7e05382
29b1ac3
65712c4
 
 
f53a13f
 
 
 
 
 
 
 
 
 
 
 
 
 
65712c4
9f16189
69ccc34
a6102b0
 
 
69ccc34
65712c4
 
 
 
 
 
 
 
 
 
 
9a3a044
 
65712c4
9a3a044
65712c4
 
 
9a3a044
 
65712c4
 
9a3a044
65712c4
 
 
7e05382
29b1ac3
c058191
 
f6979f1
9a3a044
 
c058191
29b1ac3
 
 
 
 
7e05382
 
3482478
 
9a3a044
 
29b1ac3
 
9a3a044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e1ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e33167d
 
da2c6ed
e33167d
9c3653d
da2c6ed
 
9c3653d
 
 
da2c6ed
 
206a65e
 
 
 
 
 
 
da2c6ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3653d
da2c6ed
 
9c3653d
 
29b1ac3
 
 
 
 
 
 
 
 
 
 
 
 
7e05382
 
 
f6979f1
 
3482478
f7e1ed4
29b1ac3
 
 
49fb757
9a3a044
29b1ac3
 
f7e1ed4
29b1ac3
 
f7e1ed4
29b1ac3
9c3653d
29b1ac3
 
 
 
 
f6979f1
9c3653d
 
 
9f16189
69ccc34
29b1ac3
 
9f16189
29b1ac3
 
 
 
 
 
 
 
 
 
 
 
 
9c3653d
 
 
9a3a044
 
9f16189
 
 
 
 
69ccc34
9f16189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b1ac3
9f16189
 
29b1ac3
 
69ccc34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6102b0
69ccc34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416a567
 
 
 
 
 
f7e1ed4
416a567
9a3a044
 
 
9c3653d
9a3a044
 
 
f6979f1
 
 
9a3a044
f6979f1
 
9a3a044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6979f1
9a3a044
 
f6979f1
 
e33167d
 
f6979f1
e33167d
 
f6979f1
e33167d
f6979f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3a044
f6979f1
 
 
 
 
 
 
 
 
 
9a3a044
f6979f1
29b1ac3
49fb757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7e1ed4
 
49fb757
 
 
 
 
 
 
 
 
 
 
 
f7e1ed4
 
195b95a
 
29b1ac3
 
7e05382
 
195b95a
 
8695ba2
f7e1ed4
8695ba2
f7e1ed4
8695ba2
f7e1ed4
3482478
29b1ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4865d21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
import os
import threading
import logging
import uuid
import shutil
import json
import tempfile
import glob
from flask import Flask, request as flask_request, make_response
import dash
from dash import dcc, html, Input, Output, State, callback_context, no_update
import dash_bootstrap_components as dbc
import openai
import base64
import datetime
from werkzeug.utils import secure_filename
import numpy as np
import io

import PyPDF2
import docx
import openpyxl

logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(threadName)s %(message)s")
logger = logging.getLogger("AskTricare")

app_flask = Flask(__name__)
SESSION_DATA = {}
SESSION_LOCKS = {}
SESSION_DIR_BASE = os.path.join(tempfile.gettempdir(), "asktricare_sessions")
os.makedirs(SESSION_DIR_BASE, exist_ok=True)

openai.api_key = os.environ.get("OPENAI_API_KEY")

EMBEDDING_INDEX = {}
EMBEDDING_TEXTS = {}
EMBEDDING_MODEL = "text-embedding-ada-002"

def get_session_id():
    sid = flask_request.cookies.get("asktricare_session_id")
    if not sid:
        sid = str(uuid.uuid4())
    return sid

def get_session_dir(session_id):
    d = os.path.join(SESSION_DIR_BASE, session_id)
    os.makedirs(d, exist_ok=True)
    return d

def get_session_lock(session_id):
    if session_id not in SESSION_LOCKS:
        SESSION_LOCKS[session_id] = threading.Lock()
    return SESSION_LOCKS[session_id]

def get_session_state(session_id):
    if session_id not in SESSION_DATA:
        SESSION_DATA[session_id] = {
            "messages": [],
            "uploads": [],
            "created": datetime.datetime.utcnow().isoformat(),
            "streaming": False,
            "stream_buffer": ""
        }
    return SESSION_DATA[session_id]

def save_session_state(session_id):
    state = get_session_state(session_id)
    d = get_session_dir(session_id)
    with open(os.path.join(d, "state.json"), "w") as f:
        json.dump(state, f)

def load_session_state(session_id):
    d = get_session_dir(session_id)
    path = os.path.join(d, "state.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            SESSION_DATA[session_id] = json.load(f)

def load_system_prompt():
    prompt_path = os.path.join(os.getcwd(), "system_prompt.txt")
    try:
        with open(prompt_path, "r", encoding="utf-8") as f:
            return f.read().strip()
    except Exception as e:
        logger.error(f"Failed to load system prompt: {e}")
        return "You are Ask Tricare, a helpful assistant for TRICARE health benefits. Respond conversationally, and cite relevant sources when possible. If you do not know, say so."

def embed_docs_folder():
    global EMBEDDING_INDEX, EMBEDDING_TEXTS
    docs_folder = os.path.join(os.getcwd(), "docs")
    if not os.path.isdir(docs_folder):
        logger.warning(f"Docs folder '{docs_folder}' does not exist. Skipping embedding.")
        return
    doc_files = []
    for ext in ("*.txt", "*.md", "*.pdf"):
        doc_files.extend(glob.glob(os.path.join(docs_folder, ext)))
    for doc_path in doc_files:
        fname = os.path.basename(doc_path)
        if fname in EMBEDDING_INDEX:
            continue
        try:
            with open(doc_path, "r", encoding="utf-8", errors="ignore") as f:
                text = f.read()
            if not text.strip():
                continue
            chunk = text[:4000]
            response = openai.Embedding.create(
                input=[chunk],
                model=EMBEDDING_MODEL
            )
            embedding = response['data'][0]['embedding']
            EMBEDDING_INDEX[fname] = embedding
            EMBEDDING_TEXTS[fname] = chunk
            logger.info(f"Embedded doc: {fname}")
        except Exception as e:
            logger.error(f"Embedding failed for {fname}: {e}")

embed_docs_folder()

def embed_user_doc(session_id, filename, text):
    session_dir = get_session_dir(session_id)
    if not text.strip():
        return
    try:
        chunk = text[:4000]
        response = openai.Embedding.create(
            input=[chunk],
            model=EMBEDDING_MODEL
        )
        embedding = response['data'][0]['embedding']
        user_embeds_path = os.path.join(session_dir, "user_embeds.json")
        if os.path.exists(user_embeds_path):
            with open(user_embeds_path, "r") as f:
                user_embeds = json.load(f)
        else:
            user_embeds = {"embeddings": [], "texts": [], "filenames": []}
        user_embeds["embeddings"].append(embedding)
        user_embeds["texts"].append(chunk)
        user_embeds["filenames"].append(filename)
        with open(user_embeds_path, "w") as f:
            json.dump(user_embeds, f)
        logger.info(f"Session {session_id}: Embedded user doc {filename}")
    except Exception as e:
        logger.error(f"Session {session_id}: Failed to embed user doc {filename}: {e}")

def get_user_embeddings(session_id):
    session_dir = get_session_dir(session_id)
    user_embeds_path = os.path.join(session_dir, "user_embeds.json")
    if os.path.exists(user_embeds_path):
        with open(user_embeds_path, "r") as f:
            d = json.load(f)
        embeds = np.array(d.get("embeddings", []))
        texts = d.get("texts", [])
        filenames = d.get("filenames", [])
        return embeds, texts, filenames
    return np.array([]), [], []

def semantic_search(query, embed_matrix, texts, filenames, top_k=2):
    if len(embed_matrix) == 0:
        return []
    try:
        q_embed = openai.Embedding.create(input=[query], model=EMBEDDING_MODEL)["data"][0]["embedding"]
        q_embed = np.array(q_embed)
        embed_matrix = np.array(embed_matrix)
        scores = np.dot(embed_matrix, q_embed) / (np.linalg.norm(embed_matrix, axis=1) * np.linalg.norm(q_embed) + 1e-8)
        idx = np.argsort(scores)[::-1][:top_k]
        results = []
        for i in idx:
            results.append({"filename": filenames[i], "text": texts[i], "score": float(scores[i])})
        return results
    except Exception as e:
        logger.error(f"Semantic search error: {e}")
        return []

app = dash.Dash(
    __name__,
    server=app_flask,
    suppress_callback_exceptions=True,
    external_stylesheets=[dbc.themes.BOOTSTRAP, "/assets/custom.css"],
    update_title="Ask Tricare"
)

def chat_message_card(msg, is_user):
    align = "flex-end" if is_user else "flex-start"
    color = "primary" if is_user else "secondary"
    avatar = "🧑" if is_user else "🤖"
    return html.Div(
        dbc.Card(
            dbc.CardBody([
                html.Div([
                    html.Span(avatar, style={"fontSize": "2rem"}),
                    html.Span(msg, style={"whiteSpace": "pre-wrap", "marginLeft": "0.75rem", "overflowWrap": "break-word", "wordBreak": "break-word"})
                ], style={"display": "flex", "alignItems": "center"})
            ]),
            className=f"mb-2 ms-3 me-3",
            color=color,
            inverse=is_user,
            style={"maxWidth": "80%"}
        ),
        style={"display": "flex", "justifyContent": align, "width": "100%"}
    )

def uploaded_file_card(filename, is_img):
    ext = os.path.splitext(filename)[1].lower()
    icon = "🖼️" if is_img else "📄"
    return dbc.Card(
        dbc.CardBody([
            html.Span(icon, style={"fontSize": "2rem", "marginRight": "0.5rem"}),
            html.Span(filename)
        ]),
        className="mb-2",
        color="tertiary"
    )

def disclaimer_card():
    return dbc.Card(
        dbc.CardBody([
            html.H5("Disclaimer", className="card-title"),
            html.P("This information is not private. Do not send PII or PHI. For official guidance visit the Tricare website.", style={"fontSize": "0.95rem"})
        ]),
        className="mb-2"
    )

def left_navbar_static():
    return html.Div([
        html.H3("Ask Tricare", className="mb-3 mt-3", style={"fontWeight": "bold"}),
        disclaimer_card(),
        dcc.Upload(
            id="file-upload",
            children=dbc.Button("Upload Document/Image", color="secondary", className="mb-2", style={"width": "100%"}),
            multiple=True,
            style={"width": "100%"}
        ),
        html.Div(id="upload-list"),
        html.Hr()
    ], style={"padding": "1rem", "backgroundColor": "#f8f9fa", "height": "100vh", "overflowY": "auto"})

def chat_box_card():
    return dbc.Card(
        dbc.CardBody([
            html.Div(
                id="chat-window-container",
                children=[
                    html.Div(id="chat-window", style={"width": "100%"})
                ],
                style={
                    "height": "70vh",
                    "overflowY": "auto",
                    "overflowX": "hidden",
                    "backgroundColor": "#fff",
                    "padding": "0.5rem",
                    "borderRadius": "0.5rem"
                }
            )
        ]),
        className="mt-3",
        style={
            "height": "72vh",
            "overflowY": "hidden",
            "overflowX": "hidden"
        }
    )

def user_input_card():
    return dbc.Card(
        dbc.CardBody([
            html.Div([
                dcc.Textarea(
                    id="user-input",
                    placeholder="Type your question...",
                    style={"width": "100%", "height": "60px", "resize": "vertical", "wordWrap": "break-word"},
                    wrap="soft",
                    maxLength=1000,
                    n_blur=0,
                ),
                dcc.Store(id="enter-triggered", data=False),
                html.Div([
                    dbc.Button("Send", id="send-btn", color="primary", className="mt-2 me-2", style={"minWidth": "100px"}),
                ], style={"float": "right", "display": "flex", "gap": "0.5rem"}),
                dcc.Store(id="user-input-store", data="", storage_type="session"),
                html.Button(id='hidden-send', style={'display': 'none'})
            ], style={"marginTop": "1rem"}),
            html.Div(id="error-message", style={"color": "#bb2124", "marginTop": "0.5rem"}),
            dcc.Store(id="should-clear-input", data=False)
        ])
    )

def right_main_static():
    return html.Div([
        chat_box_card(),
        user_input_card(),
        dcc.Loading(id="loading", type="default", fullscreen=False, style={"position": "absolute", "top": "5%", "left": "50%"}),
        dcc.Interval(id="stream-interval", interval=400, n_intervals=0, disabled=True, max_intervals=1000),
        dcc.Store(id="client-question", data="")
    ], style={"padding": "1rem", "backgroundColor": "#fff", "height": "100vh", "overflowY": "auto"})

app.layout = html.Div([
    dcc.Store(id="session-id", storage_type="local"),
    dcc.Location(id="url"),
    html.Div([
        html.Div(left_navbar_static(), id='left-navbar', style={"width": "30vw", "height": "100vh", "position": "fixed", "left": 0, "top": 0, "zIndex": 2, "overflowY": "auto"}),
        html.Div(right_main_static(), id='right-main', style={"marginLeft": "30vw", "width": "70vw", "overflowY": "auto"})
    ], style={"display": "flex"}),
    dcc.Store(id="clear-input", data=False),
    dcc.Store(id="scroll-bottom", data=0),
    dcc.Store(id="enter-pressed", data=False)
])

app.clientside_callback(
    """
    function(n, value) {
        var ta = document.getElementById('user-input');
        if (!ta) return window.dash_clientside.no_update;
        if (!window._asktricare_enter_handler) {
            ta.addEventListener('keydown', function(e) {
                if (e.key === 'Enter' && !e.shiftKey) {
                    e.preventDefault();
                    var btn = document.getElementById('hidden-send');
                    if (btn) btn.click();
                }
            });
            window._asktricare_enter_handler = true;
        }
        return window.dash_clientside.no_update;
    }
    """,
    Output('enter-pressed', 'data'),
    Input('user-input', 'n_blur'),
    State('user-input', 'value')
)

# Clientside callback to scroll chat window to bottom when scroll-bottom is incremented
app.clientside_callback(
    """
    function(scrollIndex) {
        var chatContainer = document.getElementById('chat-window-container');
        if (chatContainer) {
            chatContainer.scrollTop = chatContainer.scrollHeight;
        }
        return null;
    }
    """,
    Output('clear-input', 'data'),  # dummy output
    Input('scroll-bottom', 'data')
)

def _is_supported_doc(filename):
    ext = os.path.splitext(filename)[1].lower()
    return ext in [".txt", ".pdf", ".md", ".docx", ".xlsx"]

def _extract_text_from_upload(filepath, ext):
    try:
        if ext in [".txt", ".md"]:
            with open(filepath, "r", encoding="utf-8", errors="ignore") as f:
                text = f.read()
            return text
        elif ext == ".pdf":
            try:
                text = ""
                with open(filepath, "rb") as f:
                    reader = PyPDF2.PdfReader(f)
                    for page in reader.pages:
                        page_text = page.extract_text()
                        if page_text:
                            text += page_text + "\n"
                return text
            except Exception as e:
                logger.error(f"Error reading PDF {filepath}: {e}")
                return ""
        elif ext == ".docx":
            try:
                doc = docx.Document(filepath)
                paragraphs = [p.text for p in doc.paragraphs if p.text.strip()]
                return "\n".join(paragraphs)
            except Exception as e:
                logger.error(f"Error reading DOCX {filepath}: {e}")
                return ""
        elif ext == ".xlsx":
            try:
                wb = openpyxl.load_workbook(filepath, read_only=True, data_only=True)
                text_rows = []
                for ws in wb.worksheets:
                    for row in ws.iter_rows(values_only=True):
                        row_strs = [str(cell) for cell in row if cell is not None]
                        if any(row_strs):
                            text_rows.append("\t".join(row_strs))
                return "\n".join(text_rows)
            except Exception as e:
                logger.error(f"Error reading XLSX {filepath}: {e}")
                return ""
        else:
            return ""
    except Exception as e:
        logger.error(f"Error extracting text from {filepath}: {e}")
        return ""

@app.callback(
    Output("session-id", "data"),
    Input("url", "href"),
    prevent_initial_call=False
)
def assign_session_id(_):
    sid = get_session_id()
    d = get_session_dir(sid)
    load_session_state(sid)
    logger.info(f"Assigned session id: {sid}")
    return sid

@app.callback(
    Output("upload-list", "children"),
    Output("chat-window", "children"),
    Output("error-message", "children"),
    Output("stream-interval", "disabled"),
    Output("stream-interval", "n_intervals"),
    Output("user-input", "value"),
    Output("scroll-bottom", "data"),
    Input("session-id", "data"),
    Input("send-btn", "n_clicks"),
    Input("file-upload", "contents"),
    Input("stream-interval", "n_intervals"),
    Input('hidden-send', 'n_clicks'),
    State("file-upload", "filename"),
    State("user-input", "value"),
    State("scroll-bottom", "data"),
    prevent_initial_call=False
)
def main_callback(session_id, send_clicks, file_contents, stream_n, hidden_send_clicks, file_names, user_input, scroll_bottom):
    trigger = callback_context.triggered[0]['prop_id'].split('.')[0] if callback_context.triggered else ""
    session_id = session_id or get_session_id()
    session_lock = get_session_lock(session_id)
    with session_lock:
        load_session_state(session_id)
        state = get_session_state(session_id)
        error = ""
        start_streaming = False
        uploads = state.get("uploads", [])

        file_was_uploaded_and_sent = False
        file_upload_message = None
        doc_texts_to_send = []
        if trigger == "file-upload" and file_contents and file_names:
            uploads = []
            file_upload_messages = []
            if not isinstance(file_contents, list):
                file_contents = [file_contents]
                file_names = [file_names]
            for c, n in zip(file_contents, file_names):
                header, data = c.split(',', 1)
                ext = os.path.splitext(n)[1].lower()
                is_img = ext in [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".webp"]
                fname = secure_filename(f"{datetime.datetime.utcnow().strftime('%Y%m%d%H%M%S')}_{n}")
                session_dir = get_session_dir(session_id)
                fp = os.path.join(session_dir, fname)
                with open(fp, "wb") as f:
                    f.write(base64.b64decode(data))
                uploads.append({"name": fname, "is_img": is_img, "path": fp})
                if _is_supported_doc(n) and not is_img:
                    text = _extract_text_from_upload(fp, ext)
                    if text.strip():
                        embed_user_doc(session_id, fname, text)
                        logger.info(f"Session {session_id}: Uploaded doc '{n}' embedded for user vector store")
                        preview = text[:1000]
                        file_upload_messages.append({
                            "role": "user",
                            "content": f"[Document uploaded: {n}]\n{preview if preview.strip() else '[No text extracted]'}"
                        })
                        doc_texts_to_send.append(text.strip())
                    else:
                        file_upload_messages.append({
                            "role": "user",
                            "content": f"[Document uploaded: {n}]\n[No text extracted]"
                        })
                elif is_img:
                    file_upload_messages.append({
                        "role": "user",
                        "content": f"[Image uploaded: {n}]"
                    })
                else:
                    file_upload_messages.append({
                        "role": "user",
                        "content": f"[File uploaded: {n}]"
                    })
            state["uploads"].extend(uploads)
            for msg in file_upload_messages:
                state["messages"].append(msg)
            save_session_state(session_id)
            logger.info(f"Session {session_id}: Uploaded files {[u['name'] for u in uploads]}")
            if doc_texts_to_send:
                doc_question = "\n\n".join(doc_texts_to_send)
                state["messages"].append({"role": "user", "content": doc_question})
                state["streaming"] = True
                state["stream_buffer"] = ""
                save_session_state(session_id)
                def run_stream_for_doc(session_id, messages, doc_question):
                    try:
                        system_prompt = load_system_prompt()
                        rag_chunks = []
                        try:
                            global_embeds = []
                            global_texts = []
                            global_fnames = []
                            for fname, emb in EMBEDDING_INDEX.items():
                                global_embeds.append(emb)
                                global_texts.append(EMBEDDING_TEXTS[fname])
                                global_fnames.append(fname)
                            global_rag = semantic_search(doc_question, global_embeds, global_texts, global_fnames, top_k=2)
                            if global_rag:
                                for r in global_rag:
                                    rag_chunks.append(f"Global doc [{r['filename']}]:\n{r['text'][:1000]}")
                            user_embeds, user_texts, user_fnames = get_user_embeddings(session_id)
                            user_rag = semantic_search(doc_question, user_embeds, user_texts, user_fnames, top_k=2)
                            if user_rag:
                                for r in user_rag:
                                    rag_chunks.append(f"User upload [{r['filename']}]:\n{r['text'][:1000]}")
                        except Exception as e:
                            logger.error(f"Session {session_id}: RAG error (doc upload): {e}")
                        context_block = ""
                        if rag_chunks:
                            context_block = "The following sources may help answer the question:\n\n" + "\n\n".join(rag_chunks) + "\n\n"
                        msg_list = [{"role": "system", "content": system_prompt}]
                        if context_block:
                            msg_list.append({"role": "system", "content": context_block})
                        for m in messages:
                            msg_list.append({"role": m["role"], "content": m["content"]})
                        response = openai.ChatCompletion.create(
                            model="gpt-3.5-turbo",
                            messages=msg_list,
                            max_tokens=700,
                            temperature=0.2,
                            stream=True,
                        )
                        reply = ""
                        for chunk in response:
                            delta = chunk["choices"][0]["delta"]
                            content = delta.get("content", "")
                            if content:
                                reply += content
                                session_lock = get_session_lock(session_id)
                                with session_lock:
                                    load_session_state(session_id)
                                    state = get_session_state(session_id)
                                    state["stream_buffer"] = reply
                                    save_session_state(session_id)
                        session_lock = get_session_lock(session_id)
                        with session_lock:
                            load_session_state(session_id)
                            state = get_session_state(session_id)
                            state["messages"].append({"role": "assistant", "content": reply})
                            state["stream_buffer"] = ""
                            state["streaming"] = False
                            save_session_state(session_id)
                        logger.info(f"Session {session_id}: Assistant responded to doc upload")
                    except Exception as e:
                        session_lock = get_session_lock(session_id)
                        with session_lock:
                            load_session_state(session_id)
                            state = get_session_state(session_id)
                            state["streaming"] = False
                            state["stream_buffer"] = ""
                            save_session_state(session_id)
                        logger.error(f"Session {session_id}: Streaming error for doc upload: {e}")
                threading.Thread(target=run_stream_for_doc, args=(session_id, list(state["messages"]), doc_question), daemon=True).start()
                start_streaming = True
            chat_history = state.get("messages", [])
            uploads = state.get("uploads", [])
            upload_cards = [uploaded_file_card(os.path.basename(f["name"]), f["is_img"]) for f in uploads]
            chat_cards = []
            for msg in chat_history:
                chat_cards.append(chat_message_card(msg['content'], is_user=(msg['role'] == "user")))
            return upload_cards, chat_cards, error, (not state.get("streaming", False)), 0, no_update, scroll_bottom+1

        send_triggered = False
        if trigger == "send-btn" or trigger == "hidden-send":
            send_triggered = True

        if send_triggered and user_input and user_input.strip():
            question = user_input.strip()
            state["messages"].append({"role": "user", "content": question})
            state["streaming"] = True
            state["stream_buffer"] = ""
            save_session_state(session_id)
            def run_stream(session_id, messages, question):
                try:
                    system_prompt = load_system_prompt()
                    rag_chunks = []
                    try:
                        global_embeds = []
                        global_texts = []
                        global_fnames = []
                        for fname, emb in EMBEDDING_INDEX.items():
                            global_embeds.append(emb)
                            global_texts.append(EMBEDDING_TEXTS[fname])
                            global_fnames.append(fname)
                        global_rag = semantic_search(question, global_embeds, global_texts, global_fnames, top_k=2)
                        if global_rag:
                            for r in global_rag:
                                rag_chunks.append(f"Global doc [{r['filename']}]:\n{r['text'][:1000]}")
                        user_embeds, user_texts, user_fnames = get_user_embeddings(session_id)
                        user_rag = semantic_search(question, user_embeds, user_texts, user_fnames, top_k=2)
                        if user_rag:
                            for r in user_rag:
                                rag_chunks.append(f"User upload [{r['filename']}]:\n{r['text'][:1000]}")
                    except Exception as e:
                        logger.error(f"Session {session_id}: RAG error: {e}")
                    context_block = ""
                    if rag_chunks:
                        context_block = "The following sources may help answer the question:\n\n" + "\n\n".join(rag_chunks) + "\n\n"
                    msg_list = [{"role": "system", "content": system_prompt}]
                    if context_block:
                        msg_list.append({"role": "system", "content": context_block})
                    for m in messages:
                        msg_list.append({"role": m["role"], "content": m["content"]})
                    response = openai.ChatCompletion.create(
                        model="gpt-3.5-turbo",
                        messages=msg_list,
                        max_tokens=700,
                        temperature=0.2,
                        stream=True,
                    )
                    reply = ""
                    for chunk in response:
                        delta = chunk["choices"][0]["delta"]
                        content = delta.get("content", "")
                        if content:
                            reply += content
                            session_lock = get_session_lock(session_id)
                            with session_lock:
                                load_session_state(session_id)
                                state = get_session_state(session_id)
                                state["stream_buffer"] = reply
                                save_session_state(session_id)
                    session_lock = get_session_lock(session_id)
                    with session_lock:
                        load_session_state(session_id)
                        state = get_session_state(session_id)
                        state["messages"].append({"role": "assistant", "content": reply})
                        state["stream_buffer"] = ""
                        state["streaming"] = False
                        save_session_state(session_id)
                    logger.info(f"Session {session_id}: User: {question} | Assistant: {reply}")
                except Exception as e:
                    session_lock = get_session_lock(session_id)
                    with session_lock:
                        load_session_state(session_id)
                        state = get_session_state(session_id)
                        state["streaming"] = False
                        state["stream_buffer"] = ""
                        save_session_state(session_id)
                    logger.error(f"Session {session_id}: Streaming error: {e}")

            threading.Thread(target=run_stream, args=(session_id, list(state["messages"]), question), daemon=True).start()
            start_streaming = True

        if trigger == "stream-interval":
            chat_history = state.get("messages", [])
            chat_cards = []
            for msg in chat_history:
                chat_cards.append(chat_message_card(msg['content'], is_user=(msg['role'] == "user")))
            if state.get("streaming", False):
                if state.get("stream_buffer", ""):
                    chat_cards.append(chat_message_card(state["stream_buffer"], is_user=False))
                upload_cards = [uploaded_file_card(os.path.basename(f["name"]), f["is_img"]) for f in state.get("uploads", [])]
                return (
                    upload_cards,
                    chat_cards,
                    "",
                    False,
                    stream_n+1,
                    no_update,
                    scroll_bottom+1
                )
            else:
                chat_cards = []
                for msg in state.get("messages", []):
                    chat_cards.append(chat_message_card(msg['content'], is_user=(msg['role'] == "user")))
                upload_cards = [uploaded_file_card(os.path.basename(f["name"]), f["is_img"]) for f in state.get("uploads", [])]
                return (
                    upload_cards,
                    chat_cards,
                    "",
                    True,
                    0,
                    no_update,
                    scroll_bottom+1
                )

        chat_history = state.get("messages", [])
        uploads = state.get("uploads", [])
        upload_cards = [uploaded_file_card(os.path.basename(f["name"]), f["is_img"]) for f in uploads]
        chat_cards = []
        for msg in chat_history:
            chat_cards.append(chat_message_card(msg['content'], is_user=(msg['role'] == "user")))
        if trigger == "send-btn" or trigger == "hidden-send":
            return upload_cards, chat_cards, error, (not state.get("streaming", False)), 0, "", scroll_bottom+1
        elif trigger == "file-upload":
            return upload_cards, chat_cards, error, (not state.get("streaming", False)), 0, no_update, scroll_bottom+1
        else:
            return upload_cards, chat_cards, error, (not state.get("streaming", False)), 0, no_update, scroll_bottom

@app_flask.after_request
def set_session_cookie(resp):
    sid = flask_request.cookies.get("asktricare_session_id")
    if not sid:
        sid = str(uuid.uuid4())
        resp.set_cookie("asktricare_session_id", sid, max_age=60*60*24*7, path="/")
    return resp

def cleanup_sessions(max_age_hours=48):
    now = datetime.datetime.utcnow()
    for sid in os.listdir(SESSION_DIR_BASE):
        d = os.path.join(SESSION_DIR_BASE, sid)
        try:
            state_path = os.path.join(d, "state.json")
            if os.path.exists(state_path):
                with open(state_path, "r") as f:
                    st = json.load(f)
                created = st.get("created")
                if created and (now - datetime.datetime.fromisoformat(created)).total_seconds() > max_age_hours * 3600:
                    shutil.rmtree(d)
                    logger.info(f"Cleaned up session {sid}")
        except Exception as e:
            logger.error(f"Cleanup error for {sid}: {e}")

try:
    import torch
    if torch.cuda.is_available():
        torch.set_default_tensor_type(torch.cuda.FloatTensor)
        logger.info("CUDA GPU detected and configured.")
except Exception as e:
    logger.warning(f"CUDA config failed: {e}")

if __name__ == '__main__':
    print("Starting the Dash application...")
    app.run(debug=True, host='0.0.0.0', port=7860, threaded=True)
    print("Dash application has finished running.")