Spaces:
Sleeping
Sleeping
File size: 3,216 Bytes
f7ce2e3 840bcef fcc3aa5 840bcef fcc3aa5 f7ce2e3 fcc3aa5 f7ce2e3 fcc3aa5 c4f6597 fcc3aa5 f7ce2e3 fcc3aa5 f7ce2e3 fcc3aa5 840bcef fcc3aa5 840bcef fcc3aa5 840bcef fcc3aa5 840bcef fcc3aa5 840bcef fcc3aa5 f7ce2e3 fcc3aa5 f7ce2e3 fcc3aa5 f7ce2e3 fcc3aa5 840bcef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
from PIL import Image
from datetime import datetime
import numpy as np
import os
DESCRIPTION = """
# Migician Interface
This is a demo Space for paper Migician: Revealing the Magic of Free-Form Multi-Image Grounding in Multimodal Large Language Models.[ACL 2025]
Come and feel the magic of multi-image grounding!
"""
model_id = "Michael4933/Migician"
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_id, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_id)
def array_to_image_path(image_array):
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
# Convert numpy array to PIL Image
img = Image.fromarray(np.uint8(image_array))
# Generate a unique filename using timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
# Save the image
img.save(filename)
# Get the full path of the saved image
full_path = os.path.abspath(filename)
return full_path
@spaces.GPU
def run_example(image, text_input=None):
image_path = array_to_image_path(image)
image = Image.fromarray(image).convert("RGB")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image_path,
},
{
"type": "text",
"text": text_input
},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0]
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
with gr.Tab(label="Feel the Magic of Multi-Image Grounding"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture")
text_input = gr.Textbox(label="Question")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
submit_btn.click(run_example, [input_img, text_input], [output_text])
demo.queue(api_open=False)
demo.launch(debug=True) |