File size: 11,994 Bytes
1cf1e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Convert Japanese text to phonemes which is
# compatible with Julius https://github.com/julius-speech/segmentation-kit
import re
import unicodedata
from transformers import AutoTokenizer
from . import punctuation, symbols
from num2words import num2words
import pyopenjtalk
import jaconv
def kata2phoneme(text: str) -> str:
"""Convert katakana text to phonemes."""
text = text.strip()
if text == "ー":
return ["ー"]
elif text.startswith("ー"):
return ["ー"] + kata2phoneme(text[1:])
res = []
prev = None
while text:
if re.match(_MARKS, text):
res.append(text)
text = text[1:]
continue
if text.startswith("ー"):
if prev:
res.append(prev[-1])
text = text[1:]
continue
res += pyopenjtalk.g2p(text).lower().replace("cl", "q").split(" ")
break
# res = _COLON_RX.sub(":", res)
return res
def hira2kata(text: str) -> str:
return jaconv.hira2kata(text)
_SYMBOL_TOKENS = set(list("・、。?!"))
_NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
_MARKS = re.compile(
r"[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
)
def text2kata(text: str) -> str:
parsed = pyopenjtalk.run_frontend(text)
res = []
for parts in parsed:
word, yomi = replace_punctuation(parts["string"]), parts["pron"].replace(
"’", ""
)
if yomi:
if re.match(_MARKS, yomi):
if len(word) > 1:
word = [replace_punctuation(i) for i in list(word)]
yomi = word
res += yomi
sep += word
continue
elif word not in rep_map.keys() and word not in rep_map.values():
word = ","
yomi = word
res.append(yomi)
else:
if word in _SYMBOL_TOKENS:
res.append(word)
elif word in ("っ", "ッ"):
res.append("ッ")
elif word in _NO_YOMI_TOKENS:
pass
else:
res.append(word)
return hira2kata("".join(res))
def text2sep_kata(text: str) -> (list, list):
parsed = pyopenjtalk.run_frontend(text)
res = []
sep = []
for parts in parsed:
word, yomi = replace_punctuation(parts["string"]), parts["pron"].replace(
"’", ""
)
if yomi:
if re.match(_MARKS, yomi):
if len(word) > 1:
word = [replace_punctuation(i) for i in list(word)]
yomi = word
res += yomi
sep += word
continue
elif word not in rep_map.keys() and word not in rep_map.values():
word = ","
yomi = word
res.append(yomi)
else:
if word in _SYMBOL_TOKENS:
res.append(word)
elif word in ("っ", "ッ"):
res.append("ッ")
elif word in _NO_YOMI_TOKENS:
pass
else:
res.append(word)
sep.append(word)
return sep, [hira2kata(i) for i in res], get_accent(parsed)
def get_accent(parsed):
labels = pyopenjtalk.make_label(parsed)
phonemes = []
accents = []
for n, label in enumerate(labels):
phoneme = re.search(r"\-([^\+]*)\+", label).group(1)
if phoneme not in ["sil", "pau"]:
phonemes.append(phoneme.replace("cl", "q").lower())
else:
continue
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
a2 = int(re.search(r"\+(\d+)\+", label).group(1))
if re.search(r"\-([^\+]*)\+", labels[n + 1]).group(1) in ["sil", "pau"]:
a2_next = -1
else:
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
# Falling
if a1 == 0 and a2_next == a2 + 1:
accents.append(-1)
# Rising
elif a2 == 1 and a2_next == 2:
accents.append(1)
else:
accents.append(0)
return list(zip(phonemes, accents))
_ALPHASYMBOL_YOMI = {
"#": "シャープ",
"%": "パーセント",
"&": "アンド",
"+": "プラス",
"-": "マイナス",
":": "コロン",
";": "セミコロン",
"<": "小なり",
"=": "イコール",
">": "大なり",
"@": "アット",
"a": "エー",
"b": "ビー",
"c": "シー",
"d": "ディー",
"e": "イー",
"f": "エフ",
"g": "ジー",
"h": "エイチ",
"i": "アイ",
"j": "ジェー",
"k": "ケー",
"l": "エル",
"m": "エム",
"n": "エヌ",
"o": "オー",
"p": "ピー",
"q": "キュー",
"r": "アール",
"s": "エス",
"t": "ティー",
"u": "ユー",
"v": "ブイ",
"w": "ダブリュー",
"x": "エックス",
"y": "ワイ",
"z": "ゼット",
"α": "アルファ",
"β": "ベータ",
"γ": "ガンマ",
"δ": "デルタ",
"ε": "イプシロン",
"ζ": "ゼータ",
"η": "イータ",
"θ": "シータ",
"ι": "イオタ",
"κ": "カッパ",
"λ": "ラムダ",
"μ": "ミュー",
"ν": "ニュー",
"ξ": "クサイ",
"ο": "オミクロン",
"π": "パイ",
"ρ": "ロー",
"σ": "シグマ",
"τ": "タウ",
"υ": "ウプシロン",
"φ": "ファイ",
"χ": "カイ",
"ψ": "プサイ",
"ω": "オメガ",
}
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
def japanese_convert_numbers_to_words(text: str) -> str:
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
return res
def japanese_convert_alpha_symbols_to_words(text: str) -> str:
return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
def japanese_text_to_phonemes(text: str) -> str:
"""Convert Japanese text to phonemes."""
res = unicodedata.normalize("NFKC", text)
res = japanese_convert_numbers_to_words(res)
# res = japanese_convert_alpha_symbols_to_words(res)
res = text2kata(res)
res = kata2phoneme(res)
return res
def is_japanese_character(char):
# 定义日语文字系统的 Unicode 范围
japanese_ranges = [
(0x3040, 0x309F), # 平假名
(0x30A0, 0x30FF), # 片假名
(0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
(0x3400, 0x4DBF), # 汉字扩展 A
(0x20000, 0x2A6DF), # 汉字扩展 B
# 可以根据需要添加其他汉字扩展范围
]
# 将字符的 Unicode 编码转换为整数
char_code = ord(char)
# 检查字符是否在任何一个日语范围内
for start, end in japanese_ranges:
if start <= char_code <= end:
return True
return False
rep_map = {
":": ",",
";": ",",
",": ",",
"。": ".",
"!": "!",
"?": "?",
"\n": ".",
".": ".",
"…": "...",
"···": "...",
"・・・": "...",
"·": ",",
"・": ",",
"、": ",",
"$": ".",
"“": "'",
"”": "'",
'"': "'",
"‘": "'",
"’": "'",
"(": "'",
")": "'",
"(": "'",
")": "'",
"《": "'",
"》": "'",
"【": "'",
"】": "'",
"[": "'",
"]": "'",
"—": "-",
"−": "-",
"~": "-",
"~": "-",
"「": "'",
"」": "'",
}
def replace_punctuation(text):
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
replaced_text = re.sub(
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
+ "".join(punctuation)
+ r"]+",
"",
replaced_text,
)
return replaced_text
def text_normalize(text):
res = unicodedata.normalize("NFKC", text)
res = japanese_convert_numbers_to_words(res)
# res = "".join([i for i in res if is_japanese_character(i)])
res = replace_punctuation(res)
res = res.replace("゙", "")
return res
def distribute_phone(n_phone, n_word):
phones_per_word = [0] * n_word
for task in range(n_phone):
min_tasks = min(phones_per_word)
min_index = phones_per_word.index(min_tasks)
phones_per_word[min_index] += 1
return phones_per_word
def handle_long(sep_phonemes):
for i in range(len(sep_phonemes)):
if sep_phonemes[i][0] == "ー":
sep_phonemes[i][0] = sep_phonemes[i - 1][-1]
if "ー" in sep_phonemes[i]:
for j in range(len(sep_phonemes[i])):
if sep_phonemes[i][j] == "ー":
sep_phonemes[i][j] = sep_phonemes[i][j - 1][-1]
return sep_phonemes
tokenizer = AutoTokenizer.from_pretrained("./bert/deberta-v2-large-japanese-char-wwm")
def align_tones(phones, tones):
res = []
for pho in phones:
temp = [0] * len(pho)
for idx, p in enumerate(pho):
if len(tones) == 0:
break
if p == tones[0][0]:
temp[idx] = tones[0][1]
if idx > 0:
temp[idx] += temp[idx - 1]
tones.pop(0)
temp = [0] + temp
temp = temp[:-1]
if -1 in temp:
temp = [i + 1 for i in temp]
res.append(temp)
res = [i for j in res for i in j]
assert not any([i < 0 for i in res]) and not any([i > 1 for i in res])
return res
def rearrange_tones(tones, phones):
res = [0] * len(tones)
for i in range(len(tones)):
if i == 0:
if tones[i] not in punctuation:
res[i] = 1
elif tones[i] == prev:
if phones[i] in punctuation:
res[i] = 0
else:
res[i] = 1
elif tones[i] > prev:
res[i] = 2
elif tones[i] < prev:
res[i - 1] = 3
res[i] = 1
prev = tones[i]
return res
def g2p(norm_text):
sep_text, sep_kata, acc = text2sep_kata(norm_text)
sep_tokenized = []
for i in sep_text:
if i not in punctuation:
sep_tokenized.append(tokenizer.tokenize(i))
else:
sep_tokenized.append([i])
sep_phonemes = handle_long([kata2phoneme(i) for i in sep_kata])
# 异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况
for i in sep_phonemes:
for j in i:
assert j in symbols, (sep_text, sep_kata, sep_phonemes)
tones = align_tones(sep_phonemes, acc)
word2ph = []
for token, phoneme in zip(sep_tokenized, sep_phonemes):
phone_len = len(phoneme)
word_len = len(token)
aaa = distribute_phone(phone_len, word_len)
word2ph += aaa
phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"]
# tones = [0] + rearrange_tones(tones, phones[1:-1]) + [0]
tones = [0] + tones + [0]
word2ph = [1] + word2ph + [1]
assert len(phones) == len(tones)
return phones, tones, word2ph
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained("./bert/deberta-v2-large-japanese")
text = "hello,こんにちは、世界ー!……"
from text.japanese_bert import get_bert_feature
text = text_normalize(text)
print(text)
phones, tones, word2ph = g2p(text)
bert = get_bert_feature(text, word2ph)
print(phones, tones, word2ph, bert.shape)
|