File size: 1,984 Bytes
1cf1e13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import sys
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
from config import config
from .japanese import text2sep_kata
LOCAL_PATH = "./bert/deberta-v2-large-japanese"
tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH)
models = dict()
def get_bert_feature(text, word2ph, device=config.bert_gen_config.device):
sep_text, _, _ = text2sep_kata(text)
sep_tokens = [tokenizer.tokenize(t) for t in sep_text]
sep_ids = [tokenizer.convert_tokens_to_ids(t) for t in sep_tokens]
sep_ids = [2] + [item for sublist in sep_ids for item in sublist] + [3]
return get_bert_feature_with_token(sep_ids, word2ph, device)
def get_bert_feature_with_token(tokens, word2ph, device=config.bert_gen_config.device):
if (
sys.platform == "darwin"
and torch.backends.mps.is_available()
and device == "cpu"
):
device = "mps"
if not device:
device = "cuda"
if device not in models.keys():
models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device)
with torch.no_grad():
inputs = torch.tensor(tokens).to(device).unsqueeze(0)
token_type_ids = torch.zeros_like(inputs).to(device)
attention_mask = torch.ones_like(inputs).to(device)
inputs = {
"input_ids": inputs,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
}
# for i in inputs:
# inputs[i] = inputs[i].to(device)
res = models[device](**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
assert inputs["input_ids"].shape[-1] == len(word2ph)
word2phone = word2ph
phone_level_feature = []
for i in range(len(word2phone)):
repeat_feature = res[i].repeat(word2phone[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
|