Spaces:
Runtime error
Runtime error
File size: 5,153 Bytes
9868810 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import streamlit as st
from audiorecorder import audiorecorder
from transformers import AutoModelForAudioClassification, AutoFeatureExtractor
import torch
import librosa
from scipy.io.wavfile import read as read_wav
from io import BytesIO
import soundfile as sf
import io
from PIL import Image
import pandas as pd
import torch.nn as nn
import yaml
from yaml.loader import SafeLoader
import streamlit as st
import streamlit_authenticator as stauth
from streamlit_authenticator import Authenticate
hugging_face_model = "MeshalAlamr/wav2vec2-xls-r-300m-arabic_speech_commands"
@st.cache(allow_output_mutation=True)
def load_model():
feature_extractor = AutoFeatureExtractor.from_pretrained(hugging_face_model)
model = AutoModelForAudioClassification.from_pretrained(hugging_face_model)
return model, feature_extractor
model, feature_extractor = load_model()
# st.write(hashed_passwords)
with open('config.yaml') as file:
config = yaml.load(file, Loader=SafeLoader)
authenticator = Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
name, authentication_status, username = authenticator.login('تسجيل الدخول', 'main')
if st.session_state["authentication_status"]:
st.write(f'مرحبا، *{st.session_state["name"]}*')
st.title("التعرف على الأوامر العربية")
@st.cache(allow_output_mutation=True)
def load_model():
feature_extractor = AutoFeatureExtractor.from_pretrained(hugging_face_model)
model = AutoModelForAudioClassification.from_pretrained(hugging_face_model)
return model, feature_extractor
model, feature_extractor = load_model()
audio = audiorecorder("اضغط هنا للتسجيل", "يتم التسجيل... اضغط لإيقاف التسجيل")
english_to_arabic = {
'backward' : 'خلف',
'cancel' : 'إلغاء',
'close' : 'إغلاق',
'digit' : 'رقم',
'direction' : 'اتجاه',
'disable' : 'تعطيل',
'down' : 'أسفل',
'eight' : 'ثمانية',
'enable' : 'تفعيل',
'enter' : 'إدخال',
'five' : 'خمسة',
'forward' : 'أمام',
'four' : 'أربعة',
'left' : 'يسار',
'move' : 'تحريك',
'next' : 'التالي',
'nine' : 'تسعة',
'no' : 'لا',
'ok' : 'موافق',
'one' : 'واحد',
'open' : 'فتح',
'options' : 'خيارات',
'previous' : 'السابق',
'receive' : 'استقبال',
'record' : 'تسجيل',
'right' : 'يمين',
'rotate' : 'تدوير',
'send' : 'إرسال',
'seven' : 'سبعة',
'six' : 'ستة',
'start' : 'ابدأ',
'stop' : 'توقف',
'three' : 'ثلاثة',
'two' : 'اثنان',
'undo' : 'تراجع',
'up' : 'أعلى',
'yes' : 'نعم',
'zero' : 'صفر',
'zoom in' : 'تكبير',
'zoom out' : 'تصغير',
}
if len(audio) > 0:
# To play audio in frontend:
st.audio(audio)
# To save audio to a file:
wav_file = open("temp_audio.wav", "wb")
wav_file.write(audio.tobytes())
classify = st.button("اضغط هنا للتعرف")
if classify:
array, sampling_rate= librosa.load("temp_audio.wav", sr=48000)
array = librosa.resample(array, orig_sr = sampling_rate, target_sr = 16000)
input_audio = feature_extractor(array,
sampling_rate=16000, padding=True, return_tensors="pt")
softmax = nn.Softmax(-1)
logit = model(input_audio['input_values']).logits
predicted_id = int(torch.argmax(logit, dim=-1))
confidence_score = str(round(torch.max(softmax(logit)).item()*100,2))
st.subheader("الكلمة المتوقعة" + ": " + english_to_arabic[model.config.id2label[predicted_id]] )
st.subheader("%" + "نسبة التأكد" + ": " + confidence_score)
classes = [english_to_arabic[i] for i in [v for v in model.config.id2label.values()]]
if len(classes)%2 == 0:
df = pd.DataFrame({"الأمر" : classes[:len(classes)//2],
" الأمر" : classes[len(classes)//2:]})
else:
df = pd.DataFrame({"الأمر" : classes})
# CSS to inject contained in a string
hide_table_row_index = """
<style>
thead tr th:first-child {display:none}
tbody th {display:none}
</style>
"""
# Inject CSS with Markdown
st.markdown(hide_table_row_index, unsafe_allow_html=True)
# Display a static table
st.header("الأوامر المتوفرة")
st.table(df)
authenticator.logout('تسجيل الخروج', 'main')
elif st.session_state["authentication_status"] == False:
st.error('اسم المستخدم أو كلمة المرور خاطئة')
elif st.session_state["authentication_status"] == None:
st.warning('أدخل اسم المستخدم وكلمة المرور')
|