File size: 5,619 Bytes
40457bb
f646433
40457bb
 
f646433
40457bb
 
 
55575a2
40457bb
55575a2
40457bb
fc967fc
f646433
 
40457bb
 
 
 
 
 
 
 
 
27a4fd7
40457bb
 
 
 
 
 
 
 
f646433
 
40457bb
 
 
 
 
 
 
 
22f8263
 
40457bb
 
 
 
 
 
 
 
edda1c8
 
40457bb
 
 
 
 
 
 
 
fc967fc
 
f646433
 
40457bb
 
 
 
 
 
f646433
 
40457bb
 
 
 
 
f646433
40457bb
f646433
675f93f
 
40457bb
f646433
 
675f93f
f646433
 
675f93f
f646433
 
675f93f
edda1c8
675f93f
40457bb
675f93f
f646433
675f93f
40457bb
 
675f93f
7218a79
40457bb
f646433
40457bb
675f93f
40457bb
 
 
 
 
675f93f
40457bb
 
675f93f
40457bb
 
 
 
 
 
675f93f
40457bb
 
 
94a832d
40457bb
 
 
 
 
 
 
 
 
 
675f93f
40457bb
22f8263
f646433
22f8263
f646433
 
40457bb
 
 
 
 
 
 
 
 
 
 
 
 
 
f646433
40457bb
 
 
 
 
 
f646433
 
 
40457bb
f646433
 
 
 
 
40457bb
f646433
 
55575a2
 
f646433
675f93f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import random
import uuid
import json

import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>你现在运行在CPU上 但是只支持GPU.</p>"

MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "John6666/noobai-xl-nai-xl-epsilonpred075version-sdxl",
        torch_dtype=torch.float16,
        use_safetensors=True,
        add_watermarker=False
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
    pipe.to("cuda")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

@spaces.GPU(queue=False,duration=30)
def generate(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 512,
    height: int = 768,
    guidance_scale: float = 3,
    num_inference_steps: int = 30,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    pipe.to(device)
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)
    image = pipe(
        "prompt":prompt,
        "negative_prompt":negative_prompt,
        "width":width,
        "height":height,
        "guidance_scale":guidance_scale,
        "num_inference_steps":num_inference_steps,
        "generator":generator,
        "use_resolution_binning":use_resolution_binning,
    ).images[0]
    return image, seed

examples = [
    "a cat eating a piece of cheese",
    "a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
    "Ironman VS Hulk, ultrarealistic",
    "Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
    "An alien holding sign board contain word 'Flash', futuristic, neonpunk",
    "Kids going to school, Anime style"
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("""# 梦羽的模型生成器
        ### 快速生成NoobXL的模型图片.""")
    with gr.Group():
        with gr.Row():
            prompt = gr.Text(
                label="关键词",
                show_label=False,
                max_lines=1,
                placeholder="输入你要的图片关键词",
                container=False,
            )
            run_button = gr.Button("生成", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("高级选项", open=False):
        with gr.Row():
            use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True)
            negative_prompt = gr.Text(
                label="反向词条",
                max_lines=5,
                lines=4,
                placeholder="输入你要排除的图片关键词",
                value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
                visible=True,
            )
        seed = gr.Slider(
            label="种子",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="随机种子", value=True)
        with gr.Row(visible=True):
            width = gr.Slider(
                label="宽度",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1024,
            )
            height = gr.Slider(
                label="高度",
                minimum=512,
                maximum=MAX_IMAGE_SIZE,
                step=64,
                value=1536,
            )
        with gr.Row():
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=0.1,
                maximum=6,
                step=0.1,
                value=3.0,
            )
            num_inference_steps = gr.Slider(
                label="生成步数",
                minimum=1,
                maximum=50,
                step=1,
                value=28,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            randomize_seed,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch()