Spaces:
Runtime error
Runtime error
File size: 18,242 Bytes
84e44a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
import torch
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from vc_infer_pipeline import VC
import traceback, pdb
from lib.audio import load_audio
import numpy as np
import os
from fairseq import checkpoint_utils
import soundfile as sf
from gtts import gTTS
import edge_tts
import asyncio
import nest_asyncio
# model load
def get_vc(sid, to_return_protect0, to_return_protect1):
global n_spk, tgt_sr, net_g, vc, cpt, version
if sid == "" or sid == []:
global hubert_model
if hubert_model is not None: # change model or not
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
### if clean
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
return {"visible": False, "__type__": "update"}
person = "%s/%s" % (weight_root, sid)
print("loading %s" % person)
cpt = torch.load(person, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
if if_f0 == 0:
to_return_protect0 = to_return_protect1 = {
"visible": False,
"value": 0.5,
"__type__": "update",
}
else:
to_return_protect0 = {
"visible": True,
"value": to_return_protect0,
"__type__": "update",
}
to_return_protect1 = {
"visible": True,
"value": to_return_protect1,
"__type__": "update",
}
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt["config"][-3]
return (
{"visible": True, "maximum": n_spk, "__type__": "update"},
to_return_protect0,
to_return_protect1,
)
# inference
def vc_single(
sid,
input_audio_path,
f0_up_key,
f0_file,
f0_method,
file_index,
file_index2,
# file_big_npy,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
):
global tgt_sr, net_g, vc, hubert_model, version, cpt
if input_audio_path is None:
return "You need to upload an audio", None
f0_up_key = int(f0_up_key)
try:
audio = load_audio(input_audio_path, 16000)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if not hubert_model:
load_hubert()
if_f0 = cpt.get("f0", 1)
file_index = (
(
file_index.strip(" ")
.strip('"')
.strip("\n")
.strip('"')
.strip(" ")
.replace("trained", "added")
)
if file_index != ""
else file_index2
) # reemplace for 2
# file_big_npy = (
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
# )
audio_opt = vc.pipeline(
hubert_model,
net_g,
sid,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=f0_file,
)
if tgt_sr != resample_sr >= 16000:
tgt_sr = resample_sr
index_info = (
"Using index:%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
index_info,
times[0],
times[1],
times[2],
), (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
# hubert model
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
# config cpu
def use_fp32_config():
for config_file in [
"32k.json",
"40k.json",
"48k.json",
"48k_v2.json",
"32k_v2.json",
]:
with open(f"configs/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/{config_file}", "w") as f:
f.write(strr)
# config device and torch type
class Config:
def __init__(self, device, is_half):
self.device = device
self.is_half = is_half
self.n_cpu = 2 # set cpu cores ####################
self.gpu_name = None
self.gpu_mem = None
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
def device_config(self) -> tuple:
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
print("16 series / 10 series graphics cards and P40 force single precision")
self.is_half = False
for config_file in ["32k.json", "40k.json", "48k.json"]:
with open(f"configs/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/{config_file}", "w") as f:
f.write(strr)
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
else:
self.gpu_name = None
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
elif torch.backends.mps.is_available():
print("Supported N-card not found, using MPS for inference")
self.device = "mps"
else:
print("No supported N-card found, using CPU for inference")
self.device = "cpu"
self.is_half = False
use_fp32_config()
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6GB VRAM configuration
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5GB VRAM configuration
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem != None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
print(self.device, self.is_half)
return x_pad, x_query, x_center, x_max
# call inference
class ClassVoices:
def __init__(self):
self.file_index = "" # root
def apply_conf(self, f0method,
model_voice_path00, transpose00, file_index2_00,
model_voice_path01, transpose01, file_index2_01,
model_voice_path02, transpose02, file_index2_02,
model_voice_path03, transpose03, file_index2_03,
model_voice_path04, transpose04, file_index2_04,
model_voice_path05, transpose05, file_index2_05,
model_voice_path99, transpose99, file_index2_99):
#self.filename = filename
self.f0method = f0method # pm
self.model_voice_path00 = model_voice_path00
self.transpose00 = transpose00
self.file_index200 = file_index2_00
self.model_voice_path01 = model_voice_path01
self.transpose01 = transpose01
self.file_index201 = file_index2_01
self.model_voice_path02 = model_voice_path02
self.transpose02 = transpose02
self.file_index202 = file_index2_02
self.model_voice_path03 = model_voice_path03
self.transpose03 = transpose03
self.file_index203 = file_index2_03
self.model_voice_path04 = model_voice_path04
self.transpose04 = transpose04
self.file_index204 = file_index2_04
self.model_voice_path05 = model_voice_path05
self.transpose05 = transpose05
self.file_index205 = file_index2_05
self.model_voice_path99 = model_voice_path99
self.transpose99 = transpose99
self.file_index299 = file_index2_99
return "CONFIGURATION APPLIED"
def custom_voice(self,
_values, # filter indices
audio_files, # all audio files
model_voice_path='',
transpose=0,
f0method='pm',
file_index='',
file_index2='',
):
#hubert_model = None
get_vc(
sid=model_voice_path, # model path
to_return_protect0=0.33,
to_return_protect1=0.33
)
for _value_item in _values:
filename = "audio2/"+audio_files[_value_item] if _value_item != "test" else audio_files[0]
#filename = "audio2/"+audio_files[_value_item]
try:
print(audio_files[_value_item], model_voice_path)
except:
pass
info_, (sample_, audio_output_) = vc_single(
sid=0,
input_audio_path=filename, #f"audio2/{filename}",
f0_up_key=transpose, # transpose for m to f and reverse 0 12
f0_file=None,
f0_method= f0method,
file_index= file_index, # dir pwd?
file_index2= file_index2,
# file_big_npy1,
index_rate= float(0.66),
filter_radius= int(3),
resample_sr= int(0),
rms_mix_rate= float(0.25),
protect= float(0.33),
)
sf.write(
file= filename, #f"audio2/{filename}",
samplerate=sample_,
data=audio_output_
)
# detele the model
def make_test(self,
tts_text,
tts_voice,
model_path,
index_path,
transpose,
f0_method,
):
os.system("rm -rf test")
filename = "test/test.wav"
if "SET_LIMIT" == os.getenv("DEMO"):
if len(tts_text) > 60:
tts_text = tts_text[:60]
print("DEMO; limit to 60 characters")
language = tts_voice[:2]
try:
os.system("mkdir test")
#nest_asyncio.apply() # gradio;not
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename))
except:
try:
tts = gTTS(tts_text, lang=language)
tts.save(filename)
tts.save
print(f'No audio was received. Please change the tts voice for {tts_voice}. USING gTTS.')
except:
tts = gTTS('a', lang=language)
tts.save(filename)
print('Error: Audio will be replaced.')
os.system("cp test/test.wav test/real_test.wav")
self([],[]) # start modules
self.custom_voice(
["test"], # filter indices
["test/test.wav"], # all audio files
model_voice_path=model_path,
transpose=transpose,
f0method=f0_method,
file_index='',
file_index2=index_path,
)
return "test/test.wav", "test/real_test.wav"
def __call__(self, speakers_list, audio_files):
speakers_indices = {}
for index, speak_ in enumerate(speakers_list):
if speak_ in speakers_indices:
speakers_indices[speak_].append(index)
else:
speakers_indices[speak_] = [index]
# find models and index
global weight_root, index_root, config, hubert_model
weight_root = "weights"
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_root = "logs"
index_paths = []
for name in os.listdir(index_root):
if name.endswith(".index"):
index_paths.append(name)
print(names, index_paths)
# config machine
hubert_model = None
config = Config('cuda:0', is_half=True) # config = Config('cpu', is_half=False) # cpu
# filter by speaker
for _speak, _values in speakers_indices.items():
#print(_speak, _values)
#for _value_item in _values:
# self.filename = "audio2/"+audio_files[_value_item]
###print(audio_files[_value_item])
#vc(_speak, _values, audio_files)
if _speak == "SPEAKER_00":
self.custom_voice(
_values, # filteredd
audio_files,
model_voice_path=self.model_voice_path00,
file_index2=self.file_index200,
transpose=self.transpose00,
f0method=self.f0method,
file_index=self.file_index,
)
elif _speak == "SPEAKER_01":
self.custom_voice(
_values,
audio_files,
model_voice_path=self.model_voice_path01,
file_index2=self.file_index201,
transpose=self.transpose01,
f0method=self.f0method,
file_index=self.file_index,
)
elif _speak == "SPEAKER_02":
self.custom_voice(
_values,
audio_files,
model_voice_path=self.model_voice_path02,
file_index2=self.file_index202,
transpose=self.transpose02,
f0method=self.f0method,
file_index=self.file_index,
)
elif _speak == "SPEAKER_03":
self.custom_voice(
_values,
audio_files,
model_voice_path=self.model_voice_path03,
file_index2=self.file_index203,
transpose=self.transpose03,
f0method=self.f0method,
file_index=self.file_index,
)
elif _speak == "SPEAKER_04":
self.custom_voice(
_values,
audio_files,
model_voice_path=self.model_voice_path04,
file_index2=self.file_index204,
transpose=self.transpose04,
f0method=self.f0method,
file_index=self.file_index,
)
elif _speak == "SPEAKER_05":
self.custom_voice(
_values,
audio_files,
model_voice_path=self.model_voice_path05,
file_index2=self.file_index205,
transpose=self.transpose05,
f0method=self.f0method,
file_index=self.file_index,
)
elif _speak == "SPEAKER_99":
self.custom_voice(
_values,
audio_files,
model_voice_path=self.model_voice_path99,
file_index2=self.file_index299,
transpose=self.transpose99,
f0method=self.f0method,
file_index=self.file_index,
)
else:
pass
|