File size: 7,446 Bytes
46255b1
018302f
46255b1
018302f
46255b1
 
 
 
 
 
f1868ba
d966562
 
 
ada00c7
46255b1
d966562
46255b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7840c4
1b5a239
 
 
 
 
 
 
 
46255b1
518fd95
d7840c4
3e7576b
 
815a758
3e7576b
815a758
46255b1
 
d7840c4
 
 
 
 
 
 
46255b1
 
1b5a239
46255b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5a239
46255b1
 
 
d7840c4
1b5a239
46255b1
 
 
 
 
 
d7840c4
 
46255b1
 
 
d966562
 
 
 
018302f
 
d966562
 
 
46255b1
 
 
d966562
46255b1
 
d966562
 
 
 
 
28bb975
d966562
 
 
1b5a239
 
 
 
 
 
 
 
 
 
d966562
 
 
 
 
 
 
 
46255b1
 
 
1b5a239
d966562
ada00c7
3e7576b
9bf0a2d
 
46255b1
d966562
 
 
 
46255b1
 
d966562
 
 
46255b1
 
d966562
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import cv2
import argparse
import glob
import numpy as np
import os
import torch
import torch.nn.functional as F
import gradio as gr

from PIL import Image
from utils.download_url import load_file_from_url
from utils.color_fix import wavelet_reconstruction
from models.safmn_arch import SAFMN
from gradio_imageslider import ImageSlider

 
pretrain_model_url = {
	'safmn_x2': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x2-v2.pth',
	'safmn_x4': 'https://github.com/sunny2109/SAFMN/releases/download/v0.1.0/SAFMN_L_Real_LSDIR_x4-v2.pth',
}


# download weights
if not os.path.exists('./experiments/pretrained_models/SAFMN_L_Real_LSDIR_x2-v2.pth'):
	load_file_from_url(url=pretrain_model_url['safmn_x2'], model_dir='./experiments/pretrained_models/', progress=True, file_name=None)

if not os.path.exists('./experiments/pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'):
	load_file_from_url(url=pretrain_model_url['safmn_x4'], model_dir='./experiments/pretrained_models/', progress=True, file_name=None)


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def set_safmn(upscale):
	model = SAFMN(dim=128, n_blocks=16, ffn_scale=2.0, upscaling_factor=upscale)
	if upscale == 2:
		model_path = './experiments/pretrained_models/SAFMN_L_Real_LSDIR_x2.pth'
	elif upscale == 4:
		model_path = './experiments/pretrained_models/SAFMN_L_Real_LSDIR_x4-v2.pth'
	else:
		raise NotImplementedError('Only support x2/x4 upscaling!')

	model.load_state_dict(torch.load(model_path)['params'], strict=True)
	model.eval()
	return model.to(device)


def img2patch(lq, scale=4, crop_size=512):
    b, c, hl, wl = lq.size()    
    h, w = hl*scale, wl*scale
    sr_size = (b, c, h, w)
    assert b == 1

    crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale

    #adaptive step_i, step_j
    num_row = (h - 1) // crop_size_h + 1
    num_col = (w - 1) // crop_size_w + 1

    import math
    step_j = crop_size_w if num_col == 1 else math.ceil((w - crop_size_w) / (num_col - 1) - 1e-8)
    step_i = crop_size_h if num_row == 1 else math.ceil((h - crop_size_h) / (num_row - 1) - 1e-8)

    step_i = step_i // scale * scale
    step_j = step_j // scale * scale

    parts = []
    idxes = []

    i = 0  # 0~h-1
    last_i = False
    while i < h and not last_i:
        j = 0
        if i + crop_size_h >= h:
            i = h - crop_size_h
            last_i = True

        last_j = False
        while j < w and not last_j:
            if j + crop_size_w >= w:
                j = w - crop_size_w
                last_j = True
            parts.append(lq[:, :, i // scale :(i + crop_size_h) // scale, j // scale:(j + crop_size_w) // scale])
            idxes.append({'i': i, 'j': j})
            j = j + step_j
        i = i + step_i

    return torch.cat(parts, dim=0), idxes, sr_size


def patch2img(outs, idxes, sr_size, scale=4, crop_size=512):
    preds = torch.zeros(sr_size).to(outs.device)
    b, c, h, w = sr_size

    count_mt = torch.zeros((b, 1, h, w)).to(outs.device)
    crop_size_h, crop_size_w = crop_size // scale * scale, crop_size // scale * scale

    for cnt, each_idx in enumerate(idxes):
        i = each_idx['i']
        j = each_idx['j']
        preds[0, :, i: i + crop_size_h, j: j + crop_size_w] += outs[cnt]
        count_mt[0, 0, i: i + crop_size_h, j: j + crop_size_w] += 1.

    return (preds / count_mt).to(outs.device)


def load_img(filename, norm=True):
    img = np.array(Image.open(filename).convert("RGB"))
    h, w = img.shape[:2]
    
    if norm:
        img = img.astype(np.float32) / 255.
        
    return img



def inference(image, upscale, large_input_flag, color_fix):
    if upscale is None or not isinstance(upscale, (int, float)):
        upscale = 2 
		
    upscale = int(upscale)
    if 0 < upscale < 3:
		upscale = 2

	model = set_safmn(upscale)

	img = np.array(image)
	img = img.astype(np.float32) / 255.
	y = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float()
	y = y.unsqueeze(0).to(device)

	# inference
	if large_input_flag:
		patches, idx, size = img2patch(y, scale=upscale)
		with torch.no_grad():
			n = len(patches)
			outs = []
			m = 1
			i = 0
			while i < n:
				j = i + m
				if j >= n:
					j = n
				pred = output = model(patches[i:j])
				if isinstance(pred, list):
					pred = pred[-1]
				outs.append(pred.detach())
				i = j
			output = torch.cat(outs, dim=0)

		output = patch2img(output, idx, size, scale=upscale)
	else:
		with torch.no_grad():
			output = model(y)

	# color fix
	if color_fix:
		y = F.interpolate(img, scale_factor=upscale, mode='bilinear')
		output = wavelet_reconstruction(output, y)
	# tensor2img
	output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
	if output.ndim == 3:
		output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0))
	output = (output * 255.0).round().astype(np.uint8)

	return (image, output)
    



title = "SAFMN for Real-world SR"
description = ''' ### Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution - ICCV 2023
#### Long Sun](https://github.com/sunny2109), [Jiangxin Dong](https://scholar.google.com/citations?user=ruebFVEAAAAJ&hl=zh-CN&oi=ao), [Jinhui Tang](https://scholar.google.com/citations?user=ByBLlEwAAAAJ&hl=zh-CN), and [Jinshan Pan](https://jspan.github.io/)
#### [IMAG Lab](https://imag-njust.net/), Nanjing University of Science and Technology
#### Drag the slider on the super-resolution image left and right to see the changes in the image details.
#### SAFMN performs x2/x4 upscaling on the input image.  If the input image is larger than 720P, it is recommended to use Memory-efficient inference.
<br>
### If our work is useful for your research, please consider citing:
<code>
@inproceedings{sun2023safmn,
    title={Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution},
    author={Sun, Long and Dong, Jiangxin and Tang, Jinhui and Pan, Jinshan},
    booktitle={ICCV},
    year={2023}
}
</code>
<br>
'''


article = "<p style='text-align: center'><a href='https://github.com/sunny2109/SAFMN/tree/main' target='_blank'>Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution</a></p>"

#### Image,Prompts examples
examples = [
            ['real_testdata/004.png'],
            ['real_testdata/005.png'],
            ['real_testdata/010.png'],
            ['real_testdata/015.png'],
            ['real_testdata/025.png'],
            ['real_testdata/030.png'],
            ['real_testdata/034.png'],
            ['real_testdata/044.png'],
            ['real_testdata/041.png'],
            ['real_testdata/054.png'],
            ]

css = """
    .image-frame img, .image-container img {
        width: auto;
        height: auto;
        max-width: none;
    }
"""

demo = gr.Interface(
    fn=inference,
    inputs=[
        gr.Image(value="real_testdata/004.png", type="pil", label="Input"),
        gr.Number(minimum=2, maximum=4, default=2, label="Upscaling factor (up to 4)"),
		gr.Checkbox(value=False, label="Memory-efficient inference"),
        gr.Checkbox(value=False, label="Color correction"),
    ],
    outputs=ImageSlider(label="Super-Resolved Image", 
                        type="pil",
                        show_download_button=True,
                        ),
    title=title,
    description=description,
    article=article,
    examples=examples,
    css=css,
)

if __name__ == "__main__":
    demo.launch()