Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,123 Bytes
7217432 d10a47a 7217432 1cf9176 7217432 ccfc2d7 7217432 1cf9176 7217432 6ab28e6 ec4ca05 7217432 ec4ca05 7217432 ccfc2d7 7217432 2b582d4 6cd3a4b 7217432 4608244 7217432 d8a901d 6cd3a4b 7217432 2b582d4 6cd3a4b 7217432 4608244 7217432 d8a901d 6cd3a4b 7217432 6cd3a4b 7217432 6cd3a4b 7217432 6cd3a4b 7217432 6cd3a4b 7217432 6cd3a4b 7217432 6cd3a4b 7217432 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import torch
from src.transformer import SymmetricTransformer2DModel
from src.pipeline import UnifiedPipeline
from src.scheduler import Scheduler
from torchvision import transforms
from transformers import CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import VQModel
import os
from PIL import Image
import numpy as np
import spaces
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def load_models(model_path="MeissonFlow/Meissonic",
transformer_path="MeissonFlow/Muddit"):
model = SymmetricTransformer2DModel.from_pretrained(
transformer_path,
subfolder="1024/transformer"
)
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae")
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = UnifiedPipeline(
vqvae=vq_model,
tokenizer=tokenizer,
text_encoder=text_encoder,
transformer=model,
scheduler=scheduler,
)
return pipe
# Load models (global variable to avoid reloading)
pipe = load_models()
pipe.to(device)
# Common transform
def get_transform(resolution):
return transforms.Compose([
transforms.Resize((resolution, resolution)),
transforms.ToTensor(),
])
# Image-to-Text Function
@spaces.GPU
def image_to_text(image, prompt, seed=42, steps=64, cfg=9.0):
try:
resolution = 1024
transform = get_transform(resolution)
if image is not None:
pil_image = Image.fromarray(image.astype('uint8'), 'RGB') if isinstance(image, np.ndarray) else image
images = torch.stack([transform(pil_image)])
questions = [prompt] if prompt else ["Please describe this image."]
else:
images = None
questions = [prompt] if prompt else ["Please generate an image description."]
output = pipe(
prompt=questions,
image=images,
height=resolution,
width=resolution,
guidance_scale=cfg,
num_inference_steps=steps,
mask_token_embedding="./mask_token_embedding.pth",
generator=torch.manual_seed(seed),
)
return output.prompts[0]
except Exception as e:
return f"Error: {str(e)}"
# Text-to-Image Function
@spaces.GPU
def text_to_image(prompt, negative_prompt, num_images=1, seed=42, steps=64, cfg=9.0):
try:
resolution = 1024
negative_prompt = negative_prompt or "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
output = pipe(
prompt=[prompt]*num_images,
negative_prompt=[negative_prompt]*num_images,
height=resolution,
width=resolution,
guidance_scale=cfg,
num_inference_steps=steps,
mask_token_embedding="./mask_token_embedding.pth",
generator=torch.manual_seed(seed),
)
return output.images
except Exception as e:
print(f"Error: {str(e)}")
return None
# Create Gradio interface with Soft theme
with gr.Blocks(theme=gr.themes.Soft(), title="Muddit Unifined Model") as demo:
gr.Markdown("# π Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model.")
gr.Markdown(" Muddit is a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities.")
with gr.Tab("Image to Text"):
with gr.Row():
with gr.Column():
i2t_image_input = gr.Image(label="Upload Image", type="pil")
i2t_prompt_input = gr.Textbox(label="Prompt", value="Please describe this image.", placeholder="Enter your prompt here...")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32 - 1, step=1, value=42)
i2t_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
i2t_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
i2t_submit_btn = gr.Button("Generate Description", variant="primary")
with gr.Column():
i2t_output_text = gr.Textbox(label="Generated Description", interactive=False)
i2t_examples = gr.Examples(
examples=[
["assets/man.jpg"],
["assets/tennis.jpg"],
["assets/pizza2.jpg"],
["assets/plane.jpg"],
["assets/zebra.jpg"],
["assets/building.jpg"],
["assets/flower.jpg"],
],
inputs=[i2t_image_input],
label="Example Inputs"
)
with gr.Tab("VQA"):
with gr.Row():
with gr.Column():
vqa_image_input = gr.Image(label="Upload Image", type="pil")
vqa_prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your question here...")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32 - 1, step=1, value=42)
vqa_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
vqa_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
vqa_submit_btn = gr.Button("Generate Answer", variant="primary")
with gr.Column():
vqa_output_text = gr.Textbox(label="Generated Answer", interactive=False)
vqa_examples = gr.Examples(
examples=[
["assets/kid.jpg", "What color is the kid's hair?"],
["assets/street.jpg", "Can someone legally walk across the street right now?"],
["assets/dog.jpg", "Where is the dog laying?"],
["assets/dog2.jpg", "What color is the toy the dog is holding?"],
["assets/pizza.jpg", "What food item is shown?"],
["assets/sheep.jpg", "How many sheep are pictured?"],
["assets/car.jpg", "Where are the cars?"],
],
inputs=[vqa_image_input, vqa_prompt_input],
label="Example Inputs"
)
with gr.Tab("Text to Image"):
with gr.Row():
with gr.Column():
t2i_prompt_input = gr.Textbox(label="Prompt", placeholder="Describe the image you want to generate...")
t2i_negative_prompt = gr.Textbox(label="Negative Prompt",
value="worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark",
placeholder="What you don't want in the image...",
lines=5)
t2i_num_images = gr.Slider(label="Number of Images", minimum=1, maximum=4, value=1, step=1)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32 - 1, step=1, value=42)
t2i_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=64, step=1)
t2i_cfg = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, value=9.0, step=0.5)
t2i_submit_btn = gr.Button("Generate Images", variant="primary")
with gr.Column():
t2i_gallery = gr.Gallery(label="Generated Images")
t2i_examples = gr.Examples(
examples=[
["A line art portrait showcasing a human figure with flowing, textured strokes"],
["A hyper realistic image of a chimpanzee with a glass-enclosed brain on his head, standing amidst lush, bioluminescent foliage in a vibrant futuristic forest"],
["A samurai in a stylized cyberpunk outfit adorned with intricate steampunk gear and floral accents, his Mandalorian armor gleaming under the backlighting"],
["A translucent, minimalist Porsche 911 GT3RS built from sleek carbon fiber, its aerodynamic body designed in the spirit of '60s Braun and modern Apple minimalism"],
["A realistic photograph of a ramadan tent shaped like a crescent moon under a velvety back sky studded with the milky way"],
["A portrait of John Lennon, captured in the gritty detail of line art"],
["In a world plunged into an unending darkness, remnants of fading starlight pierce through a heavy, smog-filled sky"]
],
inputs=[t2i_prompt_input],
label="Example Prompts"
)
# Event handlers
i2t_submit_btn.click(
fn=image_to_text,
inputs=[i2t_image_input, i2t_prompt_input, seed, i2t_steps, i2t_cfg],
outputs=i2t_output_text
)
vqa_submit_btn.click(
fn=image_to_text,
inputs=[vqa_image_input, vqa_prompt_input, seed, vqa_steps, vqa_cfg],
outputs=vqa_output_text
)
t2i_submit_btn.click(
fn=text_to_image,
inputs=[t2i_prompt_input, t2i_negative_prompt, t2i_num_images, seed, t2i_steps, t2i_cfg],
outputs=t2i_gallery
)
demo.launch() |