File size: 4,004 Bytes
1ef2bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 23 06:07:56 2022

@author: limei
"""


import gradio as gr
import numpy as np
from PIL import Image
import requests

import hopsworks
import joblib

project = hopsworks.login()
fs = project.get_feature_store()


mr = project.get_model_registry()
model = mr.get_model("titanic_modal", version=6)
model_dir = model.download()
model = joblib.load(model_dir + "/titanic_model.pkl")


def titanic(pclass, sex, fare, embarked, familysize, family, appellation, cabin):
    input_list = []
    # PClass
    if pclass == "1":
        input_list.extend([1,0,0])
    elif pclass == "2":
        input_list.extend([0,1,0])
    elif pclass == "3":
        input_list.extend([0,0,1])

    # Gender
    if sex == "Male":
        input_list.append(0)
    else:
        input_list.append(1)

    # Age
    #input_list.append(age)

    # Fare
    input_list.append(fare)

    # Embarked
    if embarked == "S":
        input_list.extend([1,0,0])
    elif embarked == "C":
        input_list.extend([0,1,0])
    elif embarked == "Q":
        input_list.extend([0,0,1])

    # Family Size
    input_list.append(familysize)
    
    if family == "Family_Single":
        input_list.extend([1,0,0])
    elif family == "Family_Small":
        input_list.extend([0,1,0])
    elif family == "Family_Large":
        input_list.extend([0,0,1])
    
        

    # Appellation
    if appellation == "master":
        input_list.extend([1,0,0,0,0,0])
    elif appellation == "miss":
        input_list.extend([0,1,0,0,0,0])
    elif appellation == "mr":
        input_list.extend([0,0,1,0,0,0])
    elif appellation == "mrs":
        input_list.extend([0,0,0,1,0,0])
    elif appellation == "officer":
        input_list.extend([0,0,0,0,1,0])
    elif appellation == "royalty":
        input_list.extend([0,0,0,0,0,1])

    # Cabin
    if cabin == "A":
        input_list.extend([1,0,0,0,0,0,0,0,0])
    elif cabin == "B":
        input_list.extend([0,1,0,0,0,0,0,0,0])
    elif cabin == "C":
        input_list.extend([0,0,1,0,0,0,0,0,0])
    elif cabin == "D":
        input_list.extend([0,0,0,1,0,0,0,0,0])
    elif cabin == "E":
        input_list.extend([0,0,0,0,1,0,0,0,0])
    elif cabin == "F":
        input_list.extend([0,0,0,0,0,1,0,0,0])
    elif cabin == "G":
        input_list.extend([0,0,0,0,0,0,1,0,0])
    elif cabin == "T":
        input_list.extend([0,0,0,0,0,0,0,1,0])
    else:
        input_list.extend([0,0,0,0,0,0,0,0,1])


    # 'res' is a list of predictions returned as the label.
    res = model.predict(np.asarray(input_list).reshape(1, -1))
    res = res.astype(int)
    # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
    # the first element.
    titanic_url = "https://raw.githubusercontent.com/M75583/Machinelearning/main/" + str(res[0]) + ".png"
    #titanic_url = "https://github.com/Qinglin2000/ID2223/blob/main/" + str(res[0]) + ".png?raw=true"
    img = Image.open(requests.get(titanic_url, stream=True).raw)
    return img


demo = gr.Interface(
    fn=titanic,
    title="Titanic Predictive Analytics",
    description="Experiment with titanic dataset values.",
    allow_flagging="never",
    inputs=[
        gr.Dropdown(choices=["1", "2", "3"], label="PClass", value="1"),
        gr.Radio(choices=["Male", "Female"], label="Gender",  value="Male"),
        #gr.inputs.Number(default=30.0, label="Age"),
        gr.inputs.Number(default=40.99, label="Fare"),
        gr.Dropdown(choices=["S","C","Q"], label="Embarked",  value="S"),
        gr.Number(label="Family Size", precision=0, value=1),
        gr.Dropdown(choices=["Family_Single","Family_Small","Family_Large"], label="Family", value="Family_Single"),
        gr.Dropdown(choices=["master", "miss", "mr", "mrs", "officer", "royalty"], label="Appellation", value="master"),
        gr.Dropdown(choices=["A", "B", "C", "D", "E", "F", "G", "T", "U"], label="Cabin", value="A"),
    ],
    outputs=gr.Image(type="pil"))
demo.launch()