Spaces:
Sleeping
Sleeping
File size: 8,870 Bytes
ebc661a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# app.py
# Gradio multi-model summarizer (two-model outputs). Uses only Hugging Face models.
# Supports URL or pasted text input, and Paragraph / Points output formats.
import os, time, re
from typing import List, Optional, Tuple
import torch
import trafilatura
import gradio as gr
from transformers import AutoTokenizer, pipeline
# ---------------- Helper functions ----------------
def fetch_article(url: str) -> str:
downloaded = trafilatura.fetch_url(url)
if not downloaded:
raise ValueError("Failed to download URL (check link or network).")
text = trafilatura.extract(downloaded, include_comments=False, favor_recall=True)
if not text:
raise ValueError("Could not extract main article text.")
return clean_text(text)
def clean_text(text: str) -> str:
text = re.sub(r'\s+', ' ', text).strip()
sentences = [s for s in re.split(r'(?<=[.!?])\s+', text) if len(s) > 3]
return " ".join(sentences)
def to_bullet_points(summary_text: str) -> str:
sentences = re.split(r'(?<=[.!?])\s+', summary_text.strip())
sentences = [s.strip() for s in sentences if len(s.strip()) > 3]
return "\n".join([f"- {s}" for s in sentences])
# ---------------- Robust token-level chunking ----------------
def _effective_max_tokens(tokenizer, default: int = 1024) -> int:
m = getattr(tokenizer, "model_max_length", None)
if m is None:
return default
try:
m = int(m)
except Exception:
return default
if m <= 0 or m > 1_000_000:
return default
return min(m, default)
def chunk_by_tokens_safe(text: str, tokenizer, max_tokens: int, overlap: int = 64, max_chunks: int = 20) -> List[str]:
ids = tokenizer.encode(text, add_special_tokens=False, truncation=False)
if not ids:
return []
safe_max = max_tokens
step = max(safe_max - overlap, 1)
chunks = []
start = 0
while start < len(ids) and len(chunks) < max_chunks:
end = min(start + safe_max, len(ids))
chunk_ids = ids[start:end]
if len(chunk_ids) > safe_max:
chunk_ids = chunk_ids[:safe_max]
chunks.append(tokenizer.decode(chunk_ids, skip_special_tokens=True))
if end >= len(ids):
break
start += step
return chunks
# ---------------- Hugging Face summarizer wrapper ----------------
class HFSummarizer:
def __init__(self, model_name: str, device: Optional[int] = None,
max_input_tokens: Optional[int] = None,
per_chunk_new_tokens: int = 150,
per_chunk_min_new_tokens: int = 50,
reduce_new_tokens: int = 200,
beams: int = 4):
if device is None:
device = 0 if torch.cuda.is_available() else -1
self.device = device
self.model_name = model_name
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, use_fast=True)
model_max = _effective_max_tokens(self.tokenizer, default=1024)
if max_input_tokens is None:
self.max_input_tokens = max(128, model_max - 4)
else:
self.max_input_tokens = min(max_input_tokens, model_max - 4)
self.per_chunk_new_tokens = per_chunk_new_tokens
self.per_chunk_min_new_tokens = per_chunk_min_new_tokens
self.reduce_new_tokens = reduce_new_tokens
self.beams = beams
# create HF pipeline (lazy enough; will download model the first time)
self.pipe = pipeline("summarization", model=self.model_name, tokenizer=self.tokenizer, device=self.device)
def _prepare_for_model(self, text: str) -> str:
# Some models (T5 family) prefer "summarize: " prefix — pipeline often handles it,
# but giving it explicitly improves results for T5.
if "t5" in self.model_name.lower():
return "summarize: " + text
return text
def _summarize_once(self, text: str, max_new: int, min_new: int) -> str:
prepared = self._prepare_for_model(text)
tok_len = len(self.tokenizer.encode(prepared, add_special_tokens=True, truncation=False))
print(f" -> model '{self.model_name}', tokens (with special tokens): {tok_len}")
out = self.pipe(prepared, num_beams=self.beams, do_sample=False, length_penalty=1.0,
early_stopping=True, max_new_tokens=max_new, min_new_tokens=min_new, truncation=True)[0]["summary_text"]
return out.strip()
def summarize(self, text: str) -> str:
text = clean_text(text)
ids = self.tokenizer.encode(text, add_special_tokens=False, truncation=False)
if len(ids) <= self.max_input_tokens:
return self._summarize_once(text, self.per_chunk_new_tokens, self.per_chunk_min_new_tokens)
chunks = chunk_by_tokens_safe(text, self.tokenizer, max_tokens=self.max_input_tokens, overlap=64, max_chunks=20)
if not chunks:
return ""
partials = []
for c in chunks:
partials.append(self._summarize_once(c, self.per_chunk_new_tokens, self.per_chunk_min_new_tokens))
stitched = " ".join(partials)
final = self._summarize_once(stitched, self.reduce_new_tokens, min(80, self.reduce_new_tokens // 3))
return final
# ---------------- Multi-model coordinator ----------------
class MultiHFSummarizer:
def __init__(self, models: List[str] = None):
if models is None:
models = ["sshleifer/distilbart-cnn-12-6", "facebook/bart-large-cnn"]
self.models = models
self._instances = {}
def _get_inst(self, model_name: str) -> HFSummarizer:
if model_name not in self._instances:
self._instances[model_name] = HFSummarizer(model_name=model_name)
return self._instances[model_name]
def summarize_text(self, text: str) -> List[Tuple[str, str]]:
results = []
for m in self.models:
print(f"\nRunning model: {m}")
inst = self._get_inst(m)
t0 = time.time()
s = inst.summarize(text)
elapsed = round(time.time() - t0, 2)
print(f"Model {m} finished in {elapsed}s")
results.append((m, s))
return results
def summarize_url(self, url: str) -> List[Tuple[str, str]]:
text = fetch_article(url)
return self.summarize_text(text)
# ---------------- Gradio UI logic ----------------
MODEL_OPTIONS = {
"DistilBART + BART-large": ["sshleifer/distilbart-cnn-12-6", "facebook/bart-large-cnn"],
"DistilBART + Pegasus": ["sshleifer/distilbart-cnn-12-6", "google/pegasus-cnn_dailymail"],
"DistilBART + T5-small": ["sshleifer/distilbart-cnn-12-6", "t5-small"],
}
def summarize_ui(input_type: str, input_value: str, model_choice: str, out_format: str):
# get text
try:
if input_type == "URL":
text = fetch_article(input_value)
else:
text = input_value
if not text or len(text.strip()) == 0:
return "No text found. Please paste text or check the URL."
except Exception as e:
return f"Error fetching input: {e}"
models = MODEL_OPTIONS.get(model_choice, MODEL_OPTIONS["DistilBART + BART-large"])
# Warn if user selected a heavy model on CPU
warning = ""
if (not torch.cuda.is_available()) and any("bart-large" in m for m in models):
warning = ("**Warning:** You're running on CPU. `facebook/bart-large-cnn` is large and may run out of memory "
"or be slow. Consider choosing a lighter pair (DistilBART + T5-small) or request GPU in Space settings.\n\n")
coordinator = MultiHFSummarizer(models=models)
outputs = coordinator.summarize_text(text)
md = warning
for model_name, summary in outputs:
md += f"### {model_name}\n\n"
if out_format == "Points":
md += to_bullet_points(summary) + "\n\n"
else:
md += summary + "\n\n"
return md
# ---------------- Build Gradio interface ----------------
with gr.Blocks(title="Multi-Model Summarizer") as demo:
gr.Markdown("# Multi-Model Summarizer (Hugging Face models)\nChoose input, model pair, and output format (paragraph or points).")
with gr.Row():
input_type = gr.Radio(["URL", "Text"], value="URL", label="Input type")
model_choice = gr.Dropdown(list(MODEL_OPTIONS.keys()), value="DistilBART + BART-large", label="Model pair")
out_format = gr.Dropdown(["Paragraph", "Points"], value="Paragraph", label="Output format")
input_value = gr.Textbox(lines=6, placeholder="Paste article URL or text here...")
run_btn = gr.Button("Summarize")
output_md = gr.Markdown()
run_btn.click(fn=summarize_ui, inputs=[input_type, input_value, model_choice, out_format], outputs=output_md)
# Launch (Spaces will serve this automatically)
if __name__ == "__main__":
demo.launch()
|