File size: 33,849 Bytes
c29cd9c b807cd3 16561ba c29cd9c 16561ba 0af226f 16561ba c29cd9c b807cd3 7e408ac b807cd3 7e408ac b807cd3 7e408ac b807cd3 08f9319 b807cd3 83f0821 b807cd3 67854a5 b807cd3 08f9319 b807cd3 f2fe968 b807cd3 7e408ac 2df683c 7e408ac 213818c 7e408ac b78a176 7e408ac b78a176 7e408ac 58cb9c0 7e408ac 8eee8ac 7e408ac 3d65dc9 213818c 3d65dc9 213818c 3d65dc9 213818c 3d65dc9 7e408ac ce46e64 7e408ac 58cb9c0 9afdc38 37bca9a d1d4390 9afdc38 2bd190f e9a9125 58cb9c0 6156310 e9a9125 58cb9c0 7e408ac 58cb9c0 7e408ac 58cb9c0 7e408ac 58cb9c0 7e408ac 58cb9c0 7e408ac 58cb9c0 7e408ac 58cb9c0 7e408ac 58cb9c0 7e408ac b78a176 7e408ac 8eee8ac 7e408ac 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 65f031c 2df683c 2c2aa04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 |
# # # # # from langchain_google_genai import ChatGoogleGenerativeAI
# # # # # llm = ChatGoogleGenerativeAI(
# # # # # model="gemini-1.5-flash",
# # # # # google_api_key='AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE',
# # # # # temperature=0.2)
# # # # # poem = llm.invoke("Write a poem on love for burger")
# # # # # print(poem)
# # # # import streamlit as st
# # # # from langchain_google_genai import ChatGoogleGenerativeAI
# # # # # Set up the AI model
# # # # llm = ChatGoogleGenerativeAI(
# # # # model="gemini-1.5-flash", # Free model
# # # # google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# # # # temperature=0.5
# # # # )
# # # # # Streamlit UI
# # # # st.title("๐ฉบ Healthcare AI Assistant")
# # # # st.write("Ask me anything about health, symptoms, diet, or general medical advice!")
# # # # # User Input
# # # # user_question = st.text_input("Enter your health-related question:")
# # # # # Process User Query
# # # # if st.button("Get Recommendation"):
# # # # if user_question.strip():
# # # # with st.spinner("Analyzing..."):
# # # # response = llm.invoke(user_question)
# # # # st.success("Recommendation:")
# # # # st.write(response)
# # # # else:
# # # # st.warning("Please enter a question!")
# # # # # Footer
# # # # st.markdown("---")
# # # # st.markdown("๐ก *Disclaimer: This AI assistant provides general health information. Always consult a doctor for medical concerns.*")
# # # import streamlit as st
# # # from langchain_google_genai import ChatGoogleGenerativeAI
# # # # Set up AI model
# # # llm = ChatGoogleGenerativeAI(
# # # model="gemini-1.5-flash", # Free model
# # # google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# # # temperature=0.5
# # # )
# # # # Streamlit UI
# # # st.title("๐ฉบ AI Healthcare Learning Assistant")
# # # st.write("Ask me anything about healthcare, symptoms, diet, or medical learning!")
# # # # User Input
# # # user_question = st.text_input("Enter your healthcare question:")
# # # # Function to filter AI disclaimers
# # # def is_valid_response(response):
# # # disclaimers = [
# # # "I am an AI and cannot give medical advice",
# # # "Seek medical attention",
# # # "Consult a doctor",
# # # "Contact your doctor",
# # # "Go to an emergency room",
# # # ]
# # # return not any(phrase.lower() in response.lower() for phrase in disclaimers)
# # # # Process User Query
# # # if st.button("Get Information"):
# # # if user_question.strip():
# # # with st.spinner("Analyzing..."):
# # # response = llm.invoke(user_question)
# # # # Check if response is valid
# # # if is_valid_response(response):
# # # st.success("Here is the relevant information:")
# # # st.write(response)
# # # else:
# # # st.warning("AI provided a disclaimer. Trying again...")
# # # # Modify prompt to avoid disclaimers
# # # better_prompt = f"Give a well-explained answer for educational purposes only: {user_question}"
# # # retry_response = llm.invoke(better_prompt)
# # # # Display the retried response if it's valid
# # # if is_valid_response(retry_response):
# # # st.success("Here is the refined information:")
# # # st.write(retry_response)
# # # else:
# # # st.error("Unable to get a useful response. Try rephrasing your question.")
# # # else:
# # # st.warning("Please enter a question!")
# # # # Footer
# # # st.markdown("---")
# # # st.markdown("๐ก *This AI provides learning-based medical insights, not actual medical advice.*")
# # import streamlit as st
# # from langchain_google_genai import ChatGoogleGenerativeAI
# # # Set up AI model
# # llm = ChatGoogleGenerativeAI(
# # model="gemini-1.5-flash", # Free model
# # google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# # temperature=0.5
# # )
# # # Streamlit UI
# # st.title("๐ฉบ AI Healthcare Learning Assistant")
# # st.write("Ask me anything about healthcare, symptoms, diet, or medical learning!")
# # # User Input
# # user_question = st.text_input("Enter your healthcare question:")
# # # Function to filter AI disclaimers
# # def is_valid_response(response_text):
# # disclaimers = [
# # "I am an AI and cannot give medical advice",
# # "Seek medical attention",
# # "Consult a doctor",
# # "Contact your doctor",
# # "Go to an emergency room",
# # ]
# # return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)
# # # Process User Query
# # if st.button("Get Information"):
# # if user_question.strip():
# # with st.spinner("Analyzing..."):
# # response = llm.invoke(user_question)
# # # Extract the text content from AIMessage
# # response_text = response.content if hasattr(response, "content") else str(response)
# # # Check if response is valid
# # if is_valid_response(response_text):
# # st.success("Here is the relevant information:")
# # st.write(response_text)
# # else:
# # st.warning("AI provided a disclaimer. Trying again...")
# # # Modify prompt to avoid disclaimers
# # better_prompt = f"Give a well-explained answer for educational purposes only: {user_question}"
# # retry_response = llm.invoke(better_prompt)
# # # Extract text from the retried response
# # retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)
# # # Display the retried response if it's valid
# # if is_valid_response(retry_response_text):
# # st.success("Here is the refined information:")
# # st.write(retry_response_text)
# # else:
# # st.error("Unable to get a useful response. Try rephrasing your question.")
# # else:
# # st.warning("Please enter a question!")
# # # Footer
# # st.markdown("---")
# # st.markdown("๐ก *This AI provides learning-based medical insights, not actual medical advice.*")
# import streamlit as st
# from langchain_google_genai import ChatGoogleGenerativeAI
# # Set up AI model
# llm = ChatGoogleGenerativeAI(
# model="gemini-1.5-flash", # Free model
# google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# temperature=0.5
# )
# # Streamlit UI
# st.title("๐ฉบ AI Healthcare Learning Assistant")
# st.write("Ask about symptoms, medicines, and alternative treatments.")
# # User Input
# user_question = st.text_input("Enter your health-related query:")
# # Function to filter AI disclaimers
# def is_valid_response(response_text):
# disclaimers = [
# "I am an AI and cannot give medical advice",
# "Seek medical attention",
# "Consult a doctor",
# "Contact your doctor",
# "Go to an emergency room",
# ]
# return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)
# # Process User Query
# if st.button("Get Recommendation"):
# if user_question.strip():
# # Modify user input to ensure the model focuses on learning-based insights
# formatted_question = f"Without any disclaimer, recommend me medicine for {user_question}. Only for learning purposes, not for treatment. Also, suggest some different ways to cure it."
# with st.spinner("Analyzing..."):
# response = llm.invoke(formatted_question)
# # Extract text content
# response_text = response.content if hasattr(response, "content") else str(response)
# # # Check if response is valid
# if is_valid_response(response_text):
# st.success("Here is the relevant information:")
# st.write(response_text)
# else:
# st.warning("AI provided a disclaimer. Trying again...")
# # Retry with a refined prompt
# better_prompt = f"Its only for leaning purpose not for treatment provide medicine names and alternative treatments for: {user_question}"
# retry_response = llm.invoke(better_prompt)
# # Extract text from retry response
# retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)
# # # Display the retried response if valid
# # if is_valid_response(retry_response_text):
# # st.success("Here is the refined information:")
# # st.write(retry_response_text)
# # else:
# # st.error("Unable to get a useful response. Try rephrasing your question.")
# else:
# st.warning("Please enter a question!")
# # Footer
# st.markdown("---")
# st.markdown("๐ก *This AI provides learning-based medical insights, not actual medical advice.*")
#------------------------------------------------------------------------start
# import streamlit as st
# from langchain_google_genai import ChatGoogleGenerativeAI
# # Set up AI model
# llm = ChatGoogleGenerativeAI(
# model="gemini-1.5-flash", # Free model
# google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
# temperature=0.5
# )
# # Streamlit UI
# st.title("๐ฉบ CureBot: AI-Driven Health Assistant")
# st.write("Welcome to CureBot โ Your AI-Driven Health Assistant! Simply enter your symptoms or disease name, and get accurate medicine suggestions instantly. Stay informed, stay healthy!")
# # User Input
# user_question = st.text_input("Type your symptoms or disease name, and let CureBot unlock the right cure for youโfast, smart, and AI-powered")
# # Function to filter AI disclaimers
# def is_valid_response(response_text):
# disclaimers = [
# "I am an AI and cannot give medical advice",
# "Seek medical attention",
# "Consult a doctor",
# "Contact your doctor",
# "Go to an emergency room",
# ]
# return not any(phrase.lower() in response_text.lower() for phrase in disclaimers)
# # Process User Query
# if st.button("Get Recommendation"):
# if user_question.strip():
# # Ensure the AI provides both medicine and alternative treatments
# formatted_question = (
# f"Without any disclaimer, recommend medicine for {user_question}. "
# f"5 medicine names "
# f"Also, provide alternative treatments such as home remedies, lifestyle changes, exercises, or dietary suggestions. "
# f"Only for learning purposes, not for treatment."
# )
# with st.spinner("Analyzing..."):
# # response = llm.invoke(formatted_question)
# # Extract text content
# response_text = response.content if hasattr(response, "content") else str(response)
# # Check if response is valid
# if is_valid_response(response_text):
# st.success("โจ Analysis complete! Here are the best medicine recommendations for you: ๐ฝ")
# st.write(response_text)
# else:
# st.warning("โ ๏ธ Oops! It looks like the input is unclear or incorrect. Please enter a valid disease name or symptoms to get accurate recommendations")
# # Retry with a refined prompt
# better_prompt = (
# f"Strictly provide a detailed answer including:\n"
# f"1. Medicine names\n"
# f"2. Home remedies\n"
# f"3. Lifestyle changes\n"
# f"4. Exercises\n"
# f"5. Diet recommendations\n"
# f"Do not include any disclaimers. The response should be clear and structured."
# )
# retry_response = llm.invoke(better_prompt)
# # Extract text from retry response
# retry_response_text = retry_response.content if hasattr(retry_response, "content") else str(retry_response)
# # Display the retried response if valid
# if is_valid_response(retry_response_text):
# st.success("Here is the refined information:")
# st.write(retry_response_text)
# else:
# st.error("Unable to get a useful response. Try rephrasing your question.")
# else:
# st.warning("Please enter a question!")
# # Emergency Contact Button
# if st.button("Emergency Contact"):
# st.subheader("๐ Emergency Contacts")
# st.write("- ๐ *Ambulance:* 102")
# st.write("- ๐ฅ *LPU Hospital:* 18001024432")
# st.write("- ๐ฅ *National Health Helpline:* 108")
# st.write("- โ *COVID-19 Helpline:*ย 1075")
# st.write("- ๐ *Police:* 100")
# # Footer
# st.markdown("---")
# st.markdown("๐น Powered by Mayank, Wasim, Pravishank โ Innovating Healthcare with AI! ๐ก Your Health, Our Mission. ๐")
#------------------------------------------------------------------------end
#
#
#
#
#
#
#
#
#
'''
import streamlit as st
import speech_recognition as sr
from deep_translator import GoogleTranslator
from langchain_google_genai import ChatGoogleGenerativeAI
import matplotlib.pyplot as plt
import numpy as np
# Set up AI model
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
temperature=0.5
)
# Custom CSS
st.markdown("""
<style>
.big-font { font-size:20px !important; }
.stButton>button { background-color: #ff4b4b; color: white; font-size: 18px; }
.stTextInput>div>div>input { font-size: 16px; }
</style>
""", unsafe_allow_html=True)
# UI Setup
# st.image("healthcare_logo.png", width=150)
st.title("๐ฉบ CureBot: AI-Driven Health Assistant")
st.write("Empowering healthcare with AI-driven insights and recommendations!")
# Sidebar Navigation
st.sidebar.title("๐ Navigation")
option = st.sidebar.radio("Select an option:", ["Home", "Symptom Checker", "Doctor Connect", "Health Stats"])
translator = GoogleTranslator(source='auto', target='en')
if option == "Home":
user_question = st.text_input("Type your symptoms or disease name:")
if st.button("๐ค Speak Symptoms"):
recognizer = sr.Recognizer()
with sr.Microphone() as source:
st.info("Listening...")
try:
audio = recognizer.listen(source)
user_question = recognizer.recognize_google(audio)
st.success(f"Recognized: {user_question}")
except sr.UnknownValueError:
st.error("Could not understand audio")
except sr.RequestError:
st.error("Error in speech recognition service")
lang = st.selectbox("Select Language", ["English", "Hindi", "Spanish"])
if lang != "English":
user_question = translator.translate(user_question, src="en", dest=lang.lower()).text
if st.button("Get Recommendation"):
if user_question.strip():
formatted_question = (
f"Provide medicine and alternative treatments for {user_question}. "
f"List medicines, home remedies, lifestyle changes, exercises, and diet suggestions."
)
with st.spinner("Analyzing..."):
response = llm.invoke(formatted_question)
response_text = response.content if hasattr(response, "content") else str(response)
st.success("โจ Analysis complete! Here are your recommendations:")
st.markdown(response_text)
else:
st.warning("Please enter a symptom or disease name!")
elif option == "Symptom Checker":
st.subheader("๐ AI Symptom Checker")
st.write("Find possible diseases based on symptoms.")
symptoms = st.text_area("Enter symptoms separated by commas:")
if st.button("Check Symptoms"):
symptom_query = f"Analyze these symptoms: {symptoms}. List possible diseases."
response = llm.invoke(symptom_query)
st.write(response.content if hasattr(response, "content") else str(response))
elif option == "Doctor Connect":
st.subheader("๐ฅ Find a Doctor Near You")
st.write("Using Google Maps API to find the nearest hospitals and doctors.")
st.write("(Feature Under Development)")
elif option == "Health Stats":
st.subheader("๐ Health Trends & Data")
diseases = ['Diabetes', 'Hypertension', 'Heart Disease', 'Asthma', 'Obesity']
cases = np.random.randint(5000, 20000, size=len(diseases))
fig, ax = plt.subplots()
ax.barh(diseases, cases, color=['blue', 'green', 'red', 'purple', 'orange'])
ax.set_xlabel("Number of Cases")
ax.set_title("Disease Prevalence Statistics")
st.pyplot(fig)
# Emergency Contact Section
st.sidebar.markdown("---")
st.sidebar.subheader("๐ Emergency Contacts")
st.sidebar.write("- ๐ *Ambulance:* 102")
st.sidebar.write("- ๐ฅ *LPU Hospital:* 18001024432")
st.sidebar.write("- ๐ฅ *National Health Helpline:* 108")
st.sidebar.write("- โ *COVID-19 Helpline:* 1075")
st.sidebar.write("- ๐ *Police:* 1000")
st.markdown("---")
st.markdown("๐น Powered by Mayank, Wasim, Pravishank โ Innovating Healthcare with AI! ๐ก Your Health, Our Mission. ๐")
'''
import streamlit as st
import speech_recognition as sr
# import sounddevice as sd
from deep_translator import GoogleTranslator
from langchain_google_genai import ChatGoogleGenerativeAI
import matplotlib.pyplot as plt
import numpy as np
import folium
from streamlit_folium import folium_static
from geopy.geocoders import Nominatim
from geopy.distance import geodesic
import requests
# Set up AI model
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
google_api_key="AIzaSyC7Rhv4L6_oNl-nW3Qeku2SPRkxL5hhtoE",
temperature=0.5
)
# Custom CSS
st.markdown("""
<style>
.big-font { font-size:20px !important; }
.stButton>button { background-color: #ff4b4b; color: white; font-size: 18px; }
.stTextInput>div>div>input { font-size: 16px; }
</style>
""", unsafe_allow_html=True)
# UI Setup
st.title("๐ฉบ CureBot: AI-Driven Health Assistant")
st.write("Empowering healthcare with AI-driven insights and recommendations!")
# Sidebar Navigation
st.sidebar.title("๐ Navigation")
option = st.sidebar.radio("Select an option:", ["Home", "Symptom Checker", "Doctor Connect", "Health Stats", "Health Risk Calculator"])
translator = GoogleTranslator(source='auto', target='en')
# Function to Get User Location
def get_user_location():
try:
response = requests.get("https://ipinfo.io/json").json()
location = response["loc"].split(",")
return float(location[0]), float(location[1])
except:
return None, None
if option == "Home":
user_question = st.text_input("Type your disease name:")
# st.title("๐ค AI Health Assistant - Speech to Text")
# uploaded_file = st.file_uploader("Upload an audio file (.wav)", type=["wav"])
# if uploaded_file:
# recognizer = sr.Recognizer()
# with sr.AudioFile(uploaded_file) as source:
# st.info("Processing audio...")
# audio = recognizer.record(source)
# try:
# text = recognizer.recognize_google(audio)
# st.success(f"Recognized Text: {text}")
# except sr.UnknownValueError:
# st.error("Could not understand the audio")
# except sr.RequestError:
# st.error("Error with the speech recognition service")
# lang = st.selectbox("Select Language", ["English", "Hindi", "Spanish"])
# if lang != "English":
# user_question = translator.translate(user_question, src="en", dest=lang.lower()).text
if st.button("Get Recommendation"):
if user_question.strip():
formatted_question = (
f"Provide medicine and alternative treatments for {user_question}. "
f"List medicines, home remedies, lifestyle changes, exercises, and diet suggestions."
)
with st.spinner("Analyzing..."):
response = llm.invoke(formatted_question)
response_text = response.content if hasattr(response, "content") else str(response)
st.success("โจ Analysis complete! Here are your recommendations:")
st.markdown(response_text)
else:
st.warning("Please enter a symptom or disease name!")
elif option == "Symptom Checker":
st.subheader("๐ AI Symptom Checker")
st.write("Find possible diseases based on symptoms.")
symptoms = st.text_area("Enter symptoms separated by commas:")
if st.button("Check Symptoms"):
symptom_query = f"Analyze these symptoms: {symptoms}. List possible diseases."
response = llm.invoke(symptom_query)
st.write(response.content if hasattr(response, "content") else str(response))
elif option == "Symptom Checker":
st.subheader("๐ AI Symptom Checker")
st.write("Find possible diseases based on symptoms.")
symptoms = st.text_area("Enter symptoms separated by commas:")
if st.button("Check Symptoms"):
symptom_query = f"Analyze these symptoms: {symptoms}. List possible diseases."
response = llm.invoke(symptom_query)
st.write(response.content if hasattr(response, "content") else str(response))
elif option == "Doctor Connect":
st.subheader("๐ฅ Find a Doctor Near You")
address = st.text_input("Enter your location (City, State or Latitude, Longitude):")
if address:
geolocator = Nominatim(user_agent="geoapi")
location = geolocator.geocode(address)
if location:
lat, lon = location.latitude, location.longitude
st.success(f"๐ Location detected: {location.address} ({lat}, {lon})")
map_ = folium.Map(location=[lat, lon], zoom_start=13)
folium.Marker([lat, lon], popup="You are here!", icon=folium.Icon(color="blue")).add_to(map_)
folium_static(map_)
else:
st.error("โ Invalid address! Please try a different one.")
else:
st.info("โน๏ธ Please enter a location to view it on the map.")
# elif option == "Doctor Connect":
# st.subheader("๐ Doctor Connect - Find Nearby Hospitals")
# def get_user_location():
# geolocator = Nominatim(user_agent="geoapi")
# location = geolocator.geocode("Phagwara") # Replace with dynamic location if needed
# if location:
# return location.latitude, location.longitude
# return None
# def find_nearby_hospitals(user_location):
# hospitals = [
# {"name": "Apollo Hospital", "location": (30.7333, 76.7794)},
# {"name": "Fortis Hospital", "location": (30.7194, 76.7644)},
# {"name": "Max Hospital", "location": (30.7086, 76.7853)},
# {"name": "AIIMS Hospital", "location": (30.7500, 76.7800)}
# ]
# nearby_hospitals = []
# for hospital in hospitals:
# distance = geodesic(user_location, hospital["location"]).km
# if distance <= 10:
# nearby_hospitals.append(hospital)
# return nearby_hospitals
# user_location = get_user_location()
# if user_location:
# st.success(f"๐ Your Location: {user_location}")
# m = folium.Map(location=user_location, zoom_start=13)
# folium.Marker(user_location, tooltip="Your Location", icon=folium.Icon(color="blue")).add_to(m)
# hospitals = find_nearby_hospitals(user_location)
# if hospitals:
# st.write("๐ฅ Nearby Hospitals:")
# for hospital in hospitals:
# st.write(f"๐น {hospital['name']}")
# folium.Marker(hospital["location"], tooltip=hospital["name"], icon=folium.Icon(color="red")).add_to(m)
# else:
# st.write("โ ๏ธ No nearby hospitals found within 10 km.")
# folium_static(m)
# else:
# st.error("โ ๏ธ Unable to fetch location. Please allow location access or enter manually.")
elif option == "Health Stats":
st.subheader("๐ Health Trends & Data")
diseases = ['Diabetes', 'Hypertension', 'Heart Disease', 'Asthma', 'Obesity']
cases = np.random.randint(5000, 20000, size=len(diseases))
fig, ax = plt.subplots()
ax.barh(diseases, cases, color=['blue', 'green', 'red', 'purple', 'orange'])
ax.set_xlabel("Number of Cases")
ax.set_title("Disease Prevalence Statistics")
st.pyplot(fig)
elif option == "Health Risk Calculator":
st.subheader("๐งฎ Health Risk Calculator")
tabs = st.tabs(["๐๏ธ BMI Calculator", "โค๏ธ Heart Risk Estimator", "๐ฉธ Diabetes Risk Score"])
# --- BMI CALCULATOR ---
with tabs[0]:
st.markdown("### ๐๏ธ Body Mass Index (BMI) Calculator")
height_cm = st.number_input("Enter height (in cm):", min_value=50.0, max_value=250.0, step=0.1)
weight_kg = st.number_input("Enter weight (in kg):", min_value=10.0, max_value=300.0, step=0.1)
if st.button("Calculate BMI"):
if height_cm > 0:
height_m = height_cm / 100
bmi = weight_kg / (height_m ** 2)
st.success(f"Your BMI is: **{bmi:.2f}**")
if bmi < 18.5:
st.info("Underweight")
elif 18.5 <= bmi < 24.9:
st.success("Normal weight")
elif 25 <= bmi < 29.9:
st.warning("Overweight")
else:
st.error("Obese")
else:
st.warning("Height must be greater than 0.")
# --- HEART ATTACK RISK ---
with tabs[1]:
st.markdown("### โค๏ธ Heart Attack Risk Estimator")
age = st.slider("Age", 18, 100, 30)
gender = st.radio("Gender", ["Male", "Female"])
smoker = st.radio("Do you smoke?", ["Yes", "No"])
systolic_bp = st.slider("Systolic Blood Pressure (mmHg)", 80, 200, 120)
cholesterol = st.slider("Cholesterol Level (mg/dL)", 100, 400, 200)
if st.button("Estimate Heart Attack Risk"):
risk_score = 0
if age > 45: risk_score += 1
if smoker == "Yes": risk_score += 1
if systolic_bp > 140: risk_score += 1
if cholesterol > 240: risk_score += 1
if gender == "Male": risk_score += 0.5
if risk_score <= 1:
st.success("Low Risk โ
")
elif 2 <= risk_score <= 3:
st.warning("Moderate Risk โ ๏ธ")
else:
st.error("High Risk โ")
# --- DIABETES RISK ---
with tabs[2]:
st.markdown("### ๐ฉธ Diabetes Risk Score Estimator")
age_d = st.slider("Age", 10, 100, 30, key="d1")
bmi_d = st.slider("BMI", 10.0, 50.0, 22.0, step=0.1, key="d2")
family_history = st.radio("Family History of Diabetes?", ["Yes", "No"], key="d3")
physical_activity = st.radio("Do you exercise regularly?", ["Yes", "No"], key="d4")
diet = st.radio("Do you consume sugary or high-carb food often?", ["Yes", "No"], key="d5")
if st.button("Estimate Diabetes Risk"):
d_score = 0
if age_d > 45: d_score += 1
if bmi_d > 30: d_score += 1
if family_history == "Yes": d_score += 1
if physical_activity == "No": d_score += 1
if diet == "Yes": d_score += 1
if d_score <= 1:
st.success("Low Risk โ
")
elif 2 <= d_score <= 3:
st.warning("Moderate Risk โ ๏ธ")
else:
st.error("High Risk โ")
# Emergency Contact Section
st.sidebar.markdown("---")
st.sidebar.subheader("๐ Emergency Contacts")
st.sidebar.write("- ๐ *Ambulance:* 102")
st.sidebar.write("- ๐ฅ *LPU Hospital:* 18001024432")
st.sidebar.write("- ๐ฅ *National Health Helpline:* 108")
st.sidebar.write("- โ *COVID-19 Helpline:* 1075")
st.sidebar.write("- ๐ *Police:* 100")
st.markdown("---")
st.markdown("๐น Powered by Mayank, Wasim, Pravisank, Ananya โ Innovating Healthcare with AI! ๐ก Your Health, Our Mission. ๐")
# '''
# import streamlit as st
# import speech_recognition as sr
# from deep_translator import GoogleTranslator
# from langchain_google_genai import ChatGoogleGenerativeAI
# import matplotlib.pyplot as plt
# import numpy as np
# import folium
# from streamlit_folium import folium_static
# import requests
# from geopy.geocoders import Nominatim
# # Initialize AI Model
# llm = ChatGoogleGenerativeAI(
# model="gemini-1.5-flash",
# google_api_key="YOUR_GOOGLE_API_KEY",
# temperature=0.5
# )
# # Custom CSS
# st.markdown("""
# <style>
# .big-font { font-size:20px !important; }
# .stButton>button { background-color: #ff4b4b; color: white; font-size: 18px; }
# .stTextInput>div>div>input { font-size: 16px; }
# </style>
# """, unsafe_allow_html=True)
# # App Title & Description
# st.title("๐ฉบ CureBot: AI-Driven Health Assistant")
# st.write("Empowering healthcare with AI-driven insights and recommendations!")
# # Sidebar Navigation
# st.sidebar.title("๐ Navigation")
# option = st.sidebar.radio("Select an option:", ["Home", "Symptom Checker", "Doctor Connect", "Health Stats"])
# translator = GoogleTranslator(source='auto', target='en')
# Function to Get User Location
# def get_user_location():
# try:
# response = requests.get("https://ipinfo.io/json").json()
# location = response["loc"].split(",")
# return float(location[0]), float(location[1])
# except:
# return None, None
# if option == "Home":
# user_question = st.text_input("Type your symptoms or disease name:")
# if st.button("๐ค Speak Symptoms"):
# recognizer = sr.Recognizer()
# with sr.Microphone() as source:
# st.info("Listening...")
# try:
# audio = recognizer.listen(source)
# user_question = recognizer.recognize_google(audio)
# st.success(f"Recognized: {user_question}")
# except sr.UnknownValueError:
# st.error("Could not understand audio")
# except sr.RequestError:
# st.error("Error in speech recognition service")
# lang = st.selectbox("Select Language", ["English", "Hindi", "Spanish"])
# if lang != "English":
# user_question = translator.translate(user_question, src="en", dest=lang.lower())
# if st.button("Get Recommendation"):
# if user_question.strip():
# formatted_question = (
# f"Provide medicine and alternative treatments for {user_question}. "
# f"List medicines, home remedies, lifestyle changes, exercises, and diet suggestions."
# )
# with st.spinner("Analyzing..."):
# response = llm.invoke(formatted_question)
# response_text = response.content if hasattr(response, "content") else str(response)
# st.success("โจ Analysis complete! Here are your recommendations:")
# st.markdown(response_text)
# else:
# st.warning("Please enter a symptom or disease name!")
# elif option == "Symptom Checker":
# st.subheader("๐ AI Symptom Checker")
# symptoms = st.text_area("Enter symptoms separated by commas:")
# if st.button("Check Symptoms"):
# symptom_query = f"Analyze these symptoms: {symptoms}. List possible diseases."
# response = llm.invoke(symptom_query)
# st.write(response.content if hasattr(response, "content") else str(response))
# elif option == "Doctor Connect":
# st.subheader("๐ฅ Find a Doctor Near You")
# lat, lon = get_user_location()
# if lat is None or lon is None:
# st.warning("Unable to fetch location. Please allow location access or enter manually.")
# address = st.text_input("Enter your location (City, State or Latitude, Longitude):")
# if address:
# geolocator = Nominatim(user_agent="geoapi")
# location = geolocator.geocode(address)
# if location:
# lat, lon = location.latitude, location.longitude
# else:
# st.error("Invalid address! Try again.")
# if lat and lon:
# st.success(f"๐ Location detected: {lat}, {lon}")
# map_ = folium.Map(location=[lat, lon], zoom_start=13)
# folium.Marker([lat, lon], popup="You are here!", icon=folium.Icon(color="blue")).add_to(map_)
# folium_static(map_)
# elif option == "Health Stats":
# st.subheader("๐ Health Trends & Data")
# diseases = ['Diabetes', 'Hypertension', 'Heart Disease', 'Asthma', 'Obesity']
# cases = np.random.randint(5000, 20000, size=len(diseases))
# fig, ax = plt.subplots()
# ax.barh(diseases, cases, color=['blue', 'green', 'red', 'purple', 'orange'])
# ax.set_xlabel("Number of Cases")
# ax.set_title("Disease Prevalence Statistics")
# st.pyplot(fig)
# # Emergency Contacts
# st.sidebar.markdown("---")
# st.sidebar.subheader("๐ Emergency Contacts")
# st.sidebar.write("- ๐ *Ambulance:* 102")
# st.sidebar.write("- ๐ฅ *LPU Hospital:* 18001024432")
# st.sidebar.write("- ๐ฅ *National Health Helpline:* 108")
# st.sidebar.write("- โ *COVID-19 Helpline:* 1075")
# st.sidebar.write("- ๐ *Police:* 1000")
# st.markdown("---")
# st.markdown("๐น Powered by Mayank, Wasim, Pravishank โ Innovating Healthcare with AI! ๐ก Your Health, Our Mission. ๐")
# ''' |