Spaces:
Build error
Build error
File size: 1,175 Bytes
edc8afb cdfdfeb edc8afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import cv2
import gradio as gr
from predict_image import load_model, predict
def predict_fn(image, model_name):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
cv2.imwrite('./myimage.jpg', image)
# model for emotion classification
if model_name == 'EfficientNetB0':
model_name = 'effb0'
elif model_name == 'ResNet18':
model_name = 'res18'
else:
raise ValueError('Enter correct model_name')
model = load_model(model_name)
out = predict('./myimage.jpg', './result.jpg', model)
out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
return out
demo = gr.Interface(
fn=predict_fn,
inputs=[
gr.inputs.Image(label="Input Image"),
gr.Radio(['EfficientNetB0', 'ResNet18'], value='EfficientNetB0', label='Model Name')
],
outputs=[
gr.inputs.Image(label="Prediction"),
],
title="Emotion Recognition Demo",
description="Emotion Classification Model trained on FER Dataset",
examples=[
["example/fear.jpg", 'EfficientNetB0'],
["example/sad.jpg", 'EfficientNetB0'],
["example/happy.jpg", 'EfficientNetB0'],
],
)
demo.launch(debug=True) |