File size: 4,726 Bytes
f7fb909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from argparse import ArgumentParser
from itertools import groupby
import os
import cv2
import torch
import torch.nn as nn
from torchvision import transforms
import utils_


class BidirectionalLSTM(nn.Module):
    def __init__(self, nIn, nHidden, nOut):
        super(BidirectionalLSTM, self).__init__()

        self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
        self.embedding = nn.Linear(nHidden * 2, nOut)

    def forward(self, input):
        recurrent, _ = self.rnn(input)
        T, b, h = recurrent.size()
        t_rec = recurrent.view(T * b, h)

        output = self.embedding(t_rec)  # [T * b, nOut]
        output = output.view(T, b, -1)

        return output


class CRNN(nn.Module):
    def __init__(self, imgH, nc, nclass, nh, n_rnn=2, leakyRelu=False):
        super(CRNN, self).__init__()
        assert imgH % 16 == 0, "imgH has to be a multiple of 16"

        ks = [3, 3, 3, 3, 3, 3, 2]
        ps = [1, 1, 1, 1, 1, 1, 0]
        ss = [1, 1, 1, 1, 1, 1, 1]
        nm = [64, 128, 256, 256, 512, 512, 512]

        cnn = nn.Sequential()

        def convRelu(i, batchNormalization=False):
            nIn = nc if i == 0 else nm[i - 1]
            nOut = nm[i]
            cnn.add_module(
                "conv{0}".format(i), nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i])
            )
            if batchNormalization:
                cnn.add_module("batchnorm{0}".format(i), nn.BatchNorm2d(nOut))
            if leakyRelu:
                cnn.add_module("relu{0}".format(i), nn.LeakyReLU(0.2, inplace=True))
            else:
                cnn.add_module("relu{0}".format(i), nn.ReLU(True))

        convRelu(0)
        cnn.add_module("pooling{0}".format(0), nn.MaxPool2d(2, 2))  # 64x16x64
        convRelu(1)
        cnn.add_module("pooling{0}".format(1), nn.MaxPool2d(2, 2))  # 128x8x32
        convRelu(2, True)
        convRelu(3)
        cnn.add_module(
            "pooling{0}".format(2), nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        )  # 256x4x16
        convRelu(4, True)
        convRelu(5)
        cnn.add_module(
            "pooling{0}".format(3), nn.MaxPool2d((2, 2), (2, 1), (0, 1))
        )  # 512x2x16
        convRelu(6, True)  # 512x1x16

        self.cnn = cnn
        self.rnn = nn.Sequential(
            BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)
        )

    def forward(self, input):
        # conv features
        conv = self.cnn(input)
        b, c, h, w = conv.size()
        assert h == 1, "the height of conv must be 1"
        conv = conv.squeeze(2)
        conv = conv.permute(2, 0, 1)  # [w, b, c]

        # rnn features
        output = self.rnn(conv)

        return output


VOCAB = [
    "BLANK",
    "Z",
    "B",
    "4",
    "X",
    "R",
    "2",
    "U",
    "D",
    "G",
    "Q",
    "S",
    "A",
    "N",
    "K",
    "0",
    "C",
    "J",
    "P",
    "Y",
    "H",
    "7",
    "W",
    "V",
    "5",
    "F",
    "L",
    "8",
    "1",
    "I",
    "T",
    "M",
    "3",
    "O",
    "9",
    "E",
    "6",
]


def add_text(image, text, pos):
    xmin, ymin, xmax, ymax = pos
    image = cv2.putText(
        image,
        text,
        (xmin, ymin - 15),
        cv2.FONT_HERSHEY_COMPLEX,
        0.85,
        (0, 0, 255),
        2,
        cv2.LINE_AA,
    )
    return image


def greedy_decode(preds):
    # collapse best path (using itertools.groupby), map to chars, join char list to string
    best_chars_collapsed = [k for k, _ in groupby(preds) if k != "BLANK"]
    res = "".join(best_chars_collapsed)
    return res


def read_image(file):
    img = cv2.imread(file)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return img


def idx2char(preds):
    return [VOCAB[idx] for idx in preds]


def post_process(preds):
    # preds shape (seq_len, num_class)
    _, preds = torch.max(preds, dim=1)
    return idx2char(preds.tolist())


transform = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Grayscale(),
        transforms.Resize((32, 128)),
        transforms.Normalize(0.5, 0.5),
    ]
)

model = CRNN(32, 1, 37, 512)

state = torch.load("./out/ocr_point08.pt")
model.load_state_dict(state["model"])


def recognize(image):
    model.eval()
    preds = model(transform(image).unsqueeze(0))
    text = post_process(preds[:, 0, :])
    text = greedy_decode(text)
    return text


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument(
        "--image",
        default=None,
        type=str,
        help="path to image on which prediction will be made",
    )

    args = parser.parse_args()

    assert os.path.exists(args.image), f"given path {args.image} does not exists"

    im = read_image(args.image)

    text = recognize(im)