Spaces:
Sleeping
Sleeping
File size: 79,199 Bytes
1f630db 1f84642 1f630db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 |
import os
import glob
import json
import time
import random
import re
from functools import partial
import numpy as np
import torch
from PIL import Image
import gradio as gr
from scipy.spatial.distance import cdist
from sklearn.metrics import silhouette_samples
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from argparse import ArgumentParser
from datetime import datetime
from loguru import logger
import io
from transformers import CLIPModel, CLIPProcessor
# Set environment variable for Gradio
os.environ["GRADIO_ALLOWED_PATHS"] = "False"
# Global variables to hold state
GLOBAL_STATE = {
"participant_id": None,
"embedding_created": False,
"initial_clustering_done": False,
"initial_labels_updated": False,
"boundary_samples_labeled": False,
"embeddings": None,
"image_paths": None,
"cluster_labels": None,
"current_k": 8,
"label_dict": {},
"device": torch.device("cuda" if torch.cuda.is_available() else "cpu"),
"model": None,
"preprocess": None,
"constraints": [],
"silhouette_scores": None,
"boundary_samples": [],
"boundary_labels": {},
"boundary_index": 0,
"next_cluster_id": None,
"representative_images": {},
"random_seed": 42,
"original_images": {},
"show_bbox_dict": {},
"hide_bbox_dict": {},
"new_label_inputs": {},
"initial_kmeans_labels": None,
"initial_label_dict": None,
"kmeans_matched_labels": None,
"kmeans_matched_reps": None,
"evaluation_choice": None,
"evaluation_layout_is_left_hitl": True,
"annotation_start_time": None,
"annotation_end_time": None,
"annotation_duration_seconds": None,
}
# --------------------------------------------------------------
# Helper functions
# --------------------------------------------------------------
def load_bbox_json(bbox_json_path):
try:
with open(bbox_json_path, 'r', encoding='utf-8') as f:
bbox_data = json.load(f)
GLOBAL_STATE["show_bbox_dict"] = bbox_data.get("Show", {})
GLOBAL_STATE["hide_bbox_dict"] = bbox_data.get("Hide", {})
except Exception as e:
logger.error(f"Failed to load bounding box JSON: {e}")
def create_masked_image(image: Image.Image):
hide_bbox_dict = GLOBAL_STATE.get("hide_bbox_dict", {})
if not hide_bbox_dict: return image
masked_img = image.copy()
for _, box_coords in hide_bbox_dict.items():
box = (box_coords['left'], box_coords['top'], box_coords['right'], box_coords['bottom'])
black_rectangle = Image.new('RGB', (box[2] - box[0], box[3] - box[1]), color='black')
masked_img.paste(black_rectangle, (box[0], box[1]))
return masked_img
# --------------------------------------------------------------
# CLIP model and Embedding
# --------------------------------------------------------------
# ------------------ 絶対に必要な部分 ------------------
def load_clip_model(device="cuda"):
hf_model_id = "apple/DFN2B-CLIP-ViT-L-14"
model = CLIPModel.from_pretrained(hf_model_id).to(device)
model.eval()
BASE_PROC = "openai/clip-vit-large-patch14"
preprocess = CLIPProcessor.from_pretrained(BASE_PROC)
return model, preprocess
# -------------------------------------------------------
# def load_clip_model(device="cuda"):
# # ローカルのモデルが保存されているパス
# local_model_path = "./clip_model_cache"
#
# # ローカルパスの存在をチェック
# if not os.path.isdir(local_model_path):
# # エラーメッセージをより具体的にする
# error_msg = f"CLIP model not found at the specified local path: {local_model_path}. Please make sure the model is downloaded and placed in the correct directory."
# logger.error(error_msg)
# raise FileNotFoundError(error_msg)
#
# logger.info(f"Loading model and processor from local path: {local_model_path}")
#
# # ローカルパスからモデルとプロセッサを読み込む
# model = CLIPModel.from_pretrained(local_model_path).to(device)
# preprocess = CLIPProcessor.from_pretrained(local_model_path)
#
# model.eval()
# return model, preprocess
def resize_with_padding(img, target_size=(224, 224), fill_color=(0, 0, 0)):
img.thumbnail(target_size, Image.Resampling.LANCZOS)
new_img = Image.new("RGB", target_size, fill_color)
paste_x = (target_size[0] - img.width) // 2
paste_y = (target_size[1] - img.height) // 2
new_img.paste(img, (paste_x, paste_y))
return new_img
def get_face_region_embeddings(image: Image.Image, model, preprocess, device="cuda"):
show_bbox_dict = GLOBAL_STATE.get("show_bbox_dict", {})
if not show_bbox_dict:
logger.warning("No 'Show' regions defined. Using whole image.")
processed_image = resize_with_padding(image)
inputs = preprocess(images=processed_image, return_tensors="pt").to(device)
with torch.no_grad():
emb = model.get_image_features(**inputs)
return (emb / emb.norm(dim=-1, keepdim=True)).cpu().numpy().flatten()
region_embeddings = []
for region_name, coords in show_bbox_dict.items():
try:
box = (coords['left'], coords['top'], coords['right'], coords['bottom'])
region_img = image.crop(box)
processed_region = resize_with_padding(region_img)
inputs = preprocess(images=processed_region, return_tensors="pt").to(device)
with torch.no_grad():
emb = model.get_image_features(**inputs)
region_embeddings.append(emb / emb.norm(dim=-1, keepdim=True))
except Exception as e:
logger.error(f"Failed to process region {region_name}: {e}")
continue
if not region_embeddings:
logger.error("No regions were successfully processed.")
return None
mean_emb = torch.mean(torch.cat(region_embeddings, dim=0), dim=0, keepdim=True)
final_emb = mean_emb / mean_emb.norm(dim=-1, keepdim=True)
return final_emb.cpu().numpy().flatten()
def create_embeddings(image_folder, bbox_json_path):
start_time = time.time()
yield "Loading bounding box info..."
load_bbox_json(bbox_json_path)
if GLOBAL_STATE["model"] is None:
yield "Loading CLIP model..."
GLOBAL_STATE["model"], GLOBAL_STATE["preprocess"] = load_clip_model(device=GLOBAL_STATE["device"])
yield "Scanning for images..."
supported_formats = ['*.jpg', '*.jpeg', '*.png']
image_paths = sorted([p for fmt in supported_formats for p in glob.glob(os.path.join(image_folder, fmt))])
GLOBAL_STATE["image_paths"] = image_paths
GLOBAL_STATE["original_images"] = {}
embeddings = []
total_images = len(image_paths)
yield f"Processing {total_images} images..."
for i, img_path in enumerate(image_paths):
if i % 10 == 0:
yield f"Processing image {i + 1}/{total_images}: {os.path.basename(img_path)}"
try:
img = Image.open(img_path).convert('RGB')
GLOBAL_STATE["original_images"][img_path] = img
emb = get_face_region_embeddings(img, GLOBAL_STATE["model"], GLOBAL_STATE["preprocess"],
device=GLOBAL_STATE["device"])
if emb is not None:
embeddings.append(emb)
except Exception as e:
logger.error(f"Error processing {img_path}: {e}")
if not embeddings:
yield "## Failed to create any valid embeddings."
return
GLOBAL_STATE["embeddings"] = np.vstack(embeddings)
GLOBAL_STATE["embedding_created"] = True
logger.info(f"Embedding creation took {time.time() - start_time:.2f} seconds.")
yield "## Successfully Created Embeddings / 埋め込みの作成に成功しました"
# --------------------------------------------------------------
# Clustering and Annotation Logic
# --------------------------------------------------------------
# ############################################################
# ### 欠陥3の修正: 代表画像の選択ロジックを修正 ###
# ############################################################
def get_representative_images(labels, n_representatives=3):
"""
Get representative images for each cluster.
Prioritizes manually fixed samples, then selects images closest to cluster centers.
"""
if GLOBAL_STATE["embeddings"] is None: return {}
embeddings = GLOBAL_STATE["embeddings"]
image_paths = GLOBAL_STATE["image_paths"]
# Calculate cluster centers (still needed for non-fixed samples)
cluster_centers = {}
for label in np.unique(labels):
cluster_points = embeddings[labels == label]
if len(cluster_points) > 0:
cluster_centers[label] = np.mean(cluster_points, axis=0)
else:
# Fallback for empty clusters
cluster_centers[label] = np.zeros(embeddings.shape[1])
cluster_representatives = {}
for label in np.unique(labels):
cluster_indices = np.where(labels == label)[0]
if len(cluster_indices) == 0:
cluster_representatives[label] = []
continue
# --- Prioritize fixed samples ---
fixed_idx_in_cluster = sorted(list(set([
c[1] for c in GLOBAL_STATE.get("constraints", [])
if c[0] == "fixed-cluster" and c[2] == label and c[1] in cluster_indices
])))
other_idx_in_cluster = [i for i in cluster_indices if i not in fixed_idx_in_cluster]
# --- Prepare the list of representatives ---
# Add fixed samples first, with distance 0.0 (as they are definitional)
representatives = [(image_paths[i], 0.0, i) for i in fixed_idx_in_cluster]
# --- Fill remaining spots with closest samples ---
remaining_spots = n_representatives - len(representatives)
if remaining_spots > 0 and other_idx_in_cluster:
center = cluster_centers[label]
other_embeddings = embeddings[other_idx_in_cluster]
distances = cdist(other_embeddings, [center]).flatten()
# Get the original indices sorted by distance
sorted_other_indices_global = [other_idx_in_cluster[i] for i in np.argsort(distances)]
for i in range(min(remaining_spots, len(sorted_other_indices_global))):
original_idx = sorted_other_indices_global[i]
# Find the distance corresponding to this original index
dist_idx = np.where(np.array(other_idx_in_cluster) == original_idx)[0][0]
distance = distances[dist_idx]
representatives.append((image_paths[original_idx], distance, original_idx))
cluster_representatives[label] = representatives
return cluster_representatives
# ############################################################
# ### 欠陥2の修正: 制約自動生成ロジックをヘルパー関数として追加 ###
# ############################################################
def set_representative_samples_as_fixed(representative_images):
"""
Sets the most representative samples of each cluster as fixed-cluster constraints.
This anchors the key samples to their clusters for subsequent constrained clustering.
"""
new_constraints = []
# For each cluster, set the most representative sample (closest to centroid) as fixed
for cluster_id, representatives in representative_images.items():
if not representatives:
continue
# Get the most representative sample (first in the list, sorted by distance)
_, _, sample_idx = representatives[0]
# Create a fixed-cluster constraint
constraint = ("fixed-cluster", sample_idx, int(cluster_id))
# Check if this constraint already exists
if constraint not in GLOBAL_STATE["constraints"]:
GLOBAL_STATE["constraints"].append(constraint)
new_constraints.append(constraint)
logger.info(f"Added fixed constraint for cluster {cluster_id}, sample {sample_idx}")
return new_constraints
# ############################################################
# ### 欠陥2の修正: 初期クラスタリングに関数を組み込む ###
# ############################################################
def perform_initial_clustering():
if GLOBAL_STATE["embeddings"] is None: return "Embeddings not created."
k = GLOBAL_STATE["current_k"]
kmeans = KMeans(n_clusters=k, random_state=GLOBAL_STATE["random_seed"], n_init=10)
cluster_labels = kmeans.fit_predict(GLOBAL_STATE["embeddings"])
GLOBAL_STATE["cluster_labels"] = cluster_labels
GLOBAL_STATE["initial_kmeans_labels"] = cluster_labels.copy()
GLOBAL_STATE["silhouette_scores"] = silhouette_samples(GLOBAL_STATE["embeddings"], GLOBAL_STATE["cluster_labels"])
GLOBAL_STATE["label_dict"] = {str(i): "" for i in range(k)}
GLOBAL_STATE["next_cluster_id"] = k
# Get representative images
representatives = get_representative_images(GLOBAL_STATE["cluster_labels"], n_representatives=1)
GLOBAL_STATE["representative_images"] = representatives
# --- 欠陥2の修正: 自動で制約を生成 ---
# 既存の制約をクリア
GLOBAL_STATE["constraints"] = []
# 代表サンプルを固定する制約を追加
set_representative_samples_as_fixed(representatives)
logger.info(
f"Automatically generated {len(GLOBAL_STATE['constraints'])} fixed constraints for representative samples.")
# --- 修正ここまで ---
GLOBAL_STATE["initial_clustering_done"] = True
return f"Performed initial clustering with {k} clusters and automatically fixed representative samples. / {k}個のクラスタで初期クラスタリングを実行し、代表サンプルを自動的に固定しました。"
def update_initial_labels(*labels):
for i in range(GLOBAL_STATE["current_k"]):
if not labels[i] or not labels[i].strip():
error_msg = "<p class='feedback red'>Please fill in all cluster labels before proceeding. / 先に進む前に、すべてのクラスタラベルを入力してください。</p>"
return error_msg, gr.update(), gr.update(visible=False), gr.update(interactive=False)
for i in range(GLOBAL_STATE["current_k"]):
if ',' in labels[i]:
error_msg = f"<p class='feedback red'>Error in Cluster {i}: Label '{labels[i]}' contains a comma. Please use a single word or phrase. / クラスタ{i}のエラー: ラベル「{labels[i]}」にカンマが含まれています。単一の単語またはフレーズを使用してください。</p>"
return error_msg, gr.update(), gr.update(visible=False), gr.update(interactive=False)
for i, label in enumerate(labels):
if i < GLOBAL_STATE["current_k"]:
GLOBAL_STATE["label_dict"][str(i)] = label.strip()
GLOBAL_STATE["initial_label_dict"] = GLOBAL_STATE["label_dict"].copy()
GLOBAL_STATE["initial_labels_updated"] = True
status = "## Labels updated. / ラベルを更新しました。"
done_msg = "<p class='feedback green'>初期ラベルを保存しました。<b>このラベルは最後に変更可能です。</b>次の「境界サンプル」タブに進んでください。<br>Initial labels saved. <b>These can be changed later.</b> Proceed to the 'Boundary Samples' tab.</p>"
return status, gr.update(visible=False), gr.update(value=done_msg, visible=True), gr.update(interactive=True)
def extract_boundary_samples(silhouette_threshold=0.2, max_samples=30, min_embedding_distance=1e-3):
scores = GLOBAL_STATE["silhouette_scores"]
embeddings = GLOBAL_STATE["embeddings"]
if scores is None or embeddings is None:
logger.warning("Silhouette scores or embeddings not available.")
return "Scores or embeddings not found."
low_score_indices = np.where(scores < silhouette_threshold)[0]
sorted_candidate_indices = low_score_indices[np.argsort(scores[low_score_indices])]
if len(sorted_candidate_indices) == 0:
GLOBAL_STATE["boundary_samples"] = []
logger.info("No samples found below the silhouette threshold.")
return "No samples found below the silhouette threshold."
final_boundary_samples = []
selected_embeddings = []
for idx in sorted_candidate_indices:
if len(final_boundary_samples) >= max_samples:
break
candidate_emb = embeddings[idx].reshape(1, -1)
if not selected_embeddings:
final_boundary_samples.append(idx)
selected_embeddings.append(candidate_emb)
continue
distances = cdist(candidate_emb, np.vstack(selected_embeddings), 'cosine')
min_dist = np.min(distances)
if min_dist > min_embedding_distance:
final_boundary_samples.append(idx)
selected_embeddings.append(candidate_emb)
GLOBAL_STATE["boundary_samples"] = final_boundary_samples
GLOBAL_STATE["boundary_index"] = 0
GLOBAL_STATE["boundary_labels"] = {}
GLOBAL_STATE["boundary_samples_labeled"] = False
logger.info(
f"Extracted {len(final_boundary_samples)} diverse boundary samples (min_dist={min_embedding_distance}).")
return f"Extracted {len(GLOBAL_STATE['boundary_samples'])} diverse boundary samples. / 多様性を考慮した境界サンプルを{len(GLOBAL_STATE['boundary_samples'])}個抽出しました。"
def find_top_n_closest_clusters(idx, n=3):
sample_emb = GLOBAL_STATE["embeddings"][idx]
current_cid = GLOBAL_STATE["cluster_labels"][idx]
centers, cids = [], []
for cid_iter in np.unique(GLOBAL_STATE["cluster_labels"]):
points = GLOBAL_STATE["embeddings"][GLOBAL_STATE["cluster_labels"] == cid_iter]
if len(points) > 0:
centers.append(np.mean(points, axis=0))
cids.append(cid_iter)
if not centers: return []
distances = cdist([sample_emb], centers, 'euclidean')[0]
return [(cid, dist) for dist, cid in sorted(zip(distances, cids)) if cid != current_cid][:n]
def get_single_representative_image(cluster_id, exclude_idx=None):
# get_representative_imagesが返すキーは整数なので、それに合わせる
reps = GLOBAL_STATE["representative_images"].get(int(cluster_id), [])
for img_path, _, img_idx in reps:
if img_idx != exclude_idx:
img = GLOBAL_STATE["original_images"].get(img_path) or Image.open(img_path).convert('RGB')
return create_masked_image(img), img_path
return None, None
def get_current_boundary_sample():
if not GLOBAL_STATE["boundary_samples"]:
return None, "No boundary samples.", "", [gr.update()] * 20
if GLOBAL_STATE["boundary_index"] >= len(GLOBAL_STATE["boundary_samples"]):
return None, "All samples annotated.", "", [gr.update()] * 20
idx = GLOBAL_STATE["boundary_samples"][GLOBAL_STATE["boundary_index"]]
img_path = GLOBAL_STATE["image_paths"][idx]
current_cluster = GLOBAL_STATE["boundary_labels"].get(idx, GLOBAL_STATE["cluster_labels"][idx])
current_label = GLOBAL_STATE["label_dict"].get(str(current_cluster), f"Cluster {current_cluster}")
top_alternatives = find_top_n_closest_clusters(idx, n=3)
import base64
from io import BytesIO
current_reps_html = "<h4>Representative sample of current cluster (このクラスタの代表例):</h4><div style='display: flex; gap: 10px; flex-wrap: wrap;'>"
current_rep_img, _ = get_single_representative_image(current_cluster)
if current_rep_img:
try:
masked_img = create_masked_image(current_rep_img)
masked_img.thumbnail((360, 360))
buffer = BytesIO()
masked_img.save(buffer, format="PNG")
b64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
current_reps_html += f"<img src='data:image/png;base64,{b64}' style='border-radius: 4px; border: 1px solid #ddd;'>"
except Exception:
pass
current_reps_html += "</div>"
alternatives_html = ""
for alt_cid, _ in top_alternatives:
alt_label = GLOBAL_STATE["label_dict"].get(str(alt_cid), f"Cluster {alt_cid}")
alt_rep_img, _ = get_single_representative_image(alt_cid, exclude_idx=idx)
alt_rep_b64 = ""
if alt_rep_img:
alt_rep_img.thumbnail((240, 240))
buffer = BytesIO()
alt_rep_img.save(buffer, format="PNG")
alt_rep_b64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
alternatives_html += f"""
<div style="flex: 1; min-width: 240px; padding: 10px; border: 1px solid #ddd; border-radius: 8px; text-align: center; background-color: #fafafa;">
<div style="font-weight: bold; font-size: 1.1em; margin-bottom: 8px;">{alt_cid}: {alt_label}</div>
<img src='data:image/png;base64,{alt_rep_b64}' style='max-width: 240px; max-height: 240px; object-fit: contain; border-radius: 4px;'>
</div>"""
status_text = f"""
<div style="font-size: 16px; line-height: 1.6; padding: 15px; background-color: #f5f5f5; border-radius: 8px;">
<div style="font-size: 20px; font-weight: bold; margin-bottom: 10px; color: #333;">
Sample {GLOBAL_STATE['boundary_index'] + 1} / {len(GLOBAL_STATE['boundary_samples'])}
</div>
<div style="padding: 12px; background-color: #e8f5e9; border-left: 4px solid #4caf50; border-radius: 4px; margin-bottom: 15px;">
<div style="font-weight: bold; font-size: 18px; margin-bottom: 8px;">
Current cluster / 現在のクラスタ:
<span style='font-weight: normal; font-size: 0.9em; margin-left: 10px;'>この画像が示す感情のテキストが左の画像に完全に一致していれば Next を押してください.少しでも違っていたら,新しい感情のテキストあるいは別の感情のテキストを割り当ててください.テキストが完全に一致していれば良く,画像が完全に一致している必要はありません./ If the emotion text shown in this image matches the image on the left exactly, press Next. If there is even the slightest difference, assign a new emotion text or a different emotion text. The text must match exactly, but the images do not need to match exactly.</span>
</div>
<div style="font-size: 22px; margin-bottom: 10px;">{current_cluster}: {current_label}</div>
{current_reps_html}
</div>
<div style="font-weight: bold; font-size: 18px; margin-bottom: 8px;">
Similar Alternative Clusters / 似ているクラスタ候補:
<span style='font-weight: normal; font-size: 0.9em; margin-left: 10px;'>これは参考の画像であり,必ずしもここから選択する必要はありません.ただし,完全に同一の表情があればここから選択してください.もし同一のものがなければ,必要に応じて下のボタンから既存のクラスタを割り当てたり,新規クラスタを作成してください./ This is a reference image, and you do not necessarily have to select from here. However, if there is an identical expression, please select it from here. If there is no identical expression, assign an existing cluster from the buttons below or create a new cluster as necessary.</span>
</div>
<div style="display: flex; gap: 15px; flex-wrap: wrap; justify-content: space-around;">
{alternatives_html if alternatives_html else "<p>No other clusters available.</p>"}
</div>
</div>"""
button_updates = []
k = GLOBAL_STATE["current_k"]
for i in range(20):
if i < k:
label = GLOBAL_STATE["label_dict"].get(str(i), f"Cluster {i}")
if i == current_cluster:
button_updates.append(gr.update(value=f"{i}: {label} (Current)", visible=True, variant='primary'))
else:
button_updates.append(gr.update(value=f"{i}: {label}", visible=True, variant='secondary'))
else:
button_updates.append(gr.update(visible=False))
img = GLOBAL_STATE["original_images"].get(img_path) or Image.open(img_path).convert('RGB')
return create_masked_image(img), status_text, "", button_updates
def assign_to_cluster(cluster_id):
if not GLOBAL_STATE["boundary_samples"] or GLOBAL_STATE["boundary_index"] >= len(GLOBAL_STATE["boundary_samples"]):
error_msg = "Error: No boundary sample selected. Please extract samples first."
return error_msg, gr.update(), gr.update(), *([gr.update()] * 20), gr.update(), gr.update()
idx = GLOBAL_STATE["boundary_samples"][GLOBAL_STATE["boundary_index"]]
# --- 既存の制約を削除し、新しい制約を追加 ---
# このサンプルに対する既存のfixed-cluster制約を削除
GLOBAL_STATE["constraints"] = [c for c in GLOBAL_STATE["constraints"] if
not (c[0] == "fixed-cluster" and c[1] == idx)]
# 新しい制約を追加
GLOBAL_STATE["constraints"].append(("fixed-cluster", idx, int(cluster_id)))
# --- 修正ここまで ---
GLOBAL_STATE["boundary_labels"][idx] = int(cluster_id)
GLOBAL_STATE["boundary_samples_labeled"] = True
img, status, _, button_updates = get_current_boundary_sample()
return f"Assigned to cluster {cluster_id}.", img, status, *button_updates, gr.update(), gr.update()
def handle_create_new_cluster(new_label):
if not GLOBAL_STATE["boundary_samples"] or GLOBAL_STATE["boundary_index"] >= len(GLOBAL_STATE["boundary_samples"]):
error_msg = "Error: No boundary sample selected. Please extract samples first."
return error_msg, gr.update(), gr.update(), gr.update(), *([gr.update()] * 20), gr.update(), gr.update()
stripped_label = new_label.strip()
error_msg = None
if not stripped_label:
error_msg = "<p class='feedback red'>New cluster label cannot be empty. / 新規クラスタのラベルは空にできません。</p>"
elif ',' in stripped_label:
error_msg = f"<p class='feedback red'>Label '{new_label}' contains a comma. Please use a single word or phrase. / ラベル「{new_label}」にカンマが含まれています。単一の単語またはフレーズを使用してください。</p>"
if error_msg:
dummy_updates = [gr.update()] * 23
return [error_msg] + dummy_updates + [gr.update(), gr.update()]
idx = GLOBAL_STATE["boundary_samples"][GLOBAL_STATE["boundary_index"]]
new_cid = GLOBAL_STATE["next_cluster_id"]
GLOBAL_STATE["next_cluster_id"] += 1
GLOBAL_STATE["current_k"] += 1
GLOBAL_STATE["label_dict"][str(new_cid)] = stripped_label
# --- 既存の制約を削除し、新しい制約を追加 ---
GLOBAL_STATE["constraints"] = [c for c in GLOBAL_STATE["constraints"] if
not (c[0] == "fixed-cluster" and c[1] == idx)]
GLOBAL_STATE["constraints"].append(("fixed-cluster", idx, new_cid))
GLOBAL_STATE["boundary_labels"][idx] = new_cid
GLOBAL_STATE["boundary_samples_labeled"] = True
# ############################################################
# ### ★★★★★ ここが重要な修正点 ★★★★★ ###
# ############################################################
# グローバルなクラスタラベル配列を直接更新する
GLOBAL_STATE["cluster_labels"][idx] = new_cid
# 更新されたクラスタラベル全体を使って代表画像を再計算する
GLOBAL_STATE["representative_images"] = get_representative_images(
GLOBAL_STATE["cluster_labels"],
n_representatives=1
)
# ############################################################
img, status, _, button_updates = get_current_boundary_sample()
return [f"Created new cluster ({new_cid}): {stripped_label}", img, status, ""] + button_updates + [gr.update(),
gr.update()]
# ############################################################
# ### 欠陥1の修正: COP-KMeansアルゴリズムとヘルパー関数を追加 ###
# ############################################################
def kmpp_initialization(dataset, k, fixed_assignments):
"""KMeans++ initialization, respecting fixed assignments."""
rng = np.random.RandomState(GLOBAL_STATE["random_seed"])
fixed_clusters = {}
for idx, cluster in fixed_assignments:
if cluster not in fixed_clusters:
fixed_clusters[cluster] = []
fixed_clusters[cluster].append(idx)
centers = []
remaining_k = k
# Initialize centers for clusters with fixed assignments
for cluster_id in range(k):
if cluster_id in fixed_clusters:
centers.append(dataset[fixed_clusters[cluster_id]].mean(axis=0))
remaining_k -= 1
# Fill remaining centers using k-means++ logic
if remaining_k > 0:
if not centers:
first_idx = rng.choice(len(dataset))
centers.append(dataset[first_idx])
remaining_k -= 1
while remaining_k > 0:
distances = np.min([np.sum((dataset - center) ** 2, axis=1) for center in centers], axis=0)
# Avoid division by zero if all distances are zero
if distances.sum() == 0:
next_idx = rng.choice(np.where(distances == 0)[0])
else:
next_idx = rng.choice(len(dataset), p=distances / distances.sum())
centers.append(dataset[next_idx])
remaining_k -= 1
return np.array(centers)
def satisfies_constraints(idx, cluster_id, labels, ml, cl):
"""Check if assigning point idx to cluster_id satisfies all constraints."""
for i, j in ml:
if i == idx and labels[j] != -1 and labels[j] != cluster_id: return False
if j == idx and labels[i] != -1 and labels[i] != cluster_id: return False
for i, j in cl:
if i == idx and labels[j] == cluster_id: return False
if j == idx and labels[i] == cluster_id: return False
return True
def find_nearest_cluster(point, centers, labels, ml, cl, idx):
"""Find the nearest cluster center that satisfies all constraints."""
distances = np.sum((centers - point) ** 2, axis=1)
sorted_idx = np.argsort(distances)
for cluster_id in sorted_idx:
if satisfies_constraints(idx, cluster_id, labels, ml, cl):
return cluster_id
return None
def cop_kmeans(dataset, k, ml=None, cl=None, fixed_labels=None, max_iter=300, tol=1e-4, anchor_weight=10.0):
"""Constrained K-means clustering with Must-Link, Cannot-Link, and weighted anchor constraints."""
ml = ml or []
cl = cl or []
fixed_labels = fixed_labels or {}
fixed_assignments = list(fixed_labels.items())
cluster_centers = kmpp_initialization(dataset, k, fixed_assignments)
cluster_labels = np.full(len(dataset), -1)
for idx, cluster in fixed_assignments:
cluster_labels[idx] = cluster
for iter_count in range(max_iter):
old_labels = cluster_labels.copy()
violated = False
for i in range(len(dataset)):
if i in fixed_labels: continue
nearest_cluster = find_nearest_cluster(dataset[i], cluster_centers, cluster_labels, ml, cl, i)
if nearest_cluster is None:
violated = True
break
cluster_labels[i] = nearest_cluster
if violated:
logger.warning("Constraints violated, cannot find a valid assignment. Re-initializing might be needed.")
return None
for j in range(k):
idx_in_cluster = np.where(cluster_labels == j)[0]
if len(idx_in_cluster) == 0: continue
fixed_idx_in_cluster = [i for i in idx_in_cluster if i in fixed_labels and fixed_labels[i] == j]
normal_idx_in_cluster = [i for i in idx_in_cluster if i not in fixed_idx_in_cluster]
anchor_emb = dataset[fixed_idx_in_cluster] if fixed_idx_in_cluster else np.empty((0, dataset.shape[1]))
others_emb = dataset[normal_idx_in_cluster] if normal_idx_in_cluster else np.empty((0, dataset.shape[1]))
if len(fixed_idx_in_cluster) > 0:
w_anchor = np.full(len(fixed_idx_in_cluster), anchor_weight)
w_others = np.ones(len(normal_idx_in_cluster))
all_emb = np.vstack([anchor_emb, others_emb])
w = np.concatenate([w_anchor, w_others])[:, None]
cluster_centers[j] = (w * all_emb).sum(axis=0) / w.sum()
elif len(normal_idx_in_cluster) > 0:
cluster_centers[j] = others_emb.mean(axis=0)
if np.all(cluster_labels == old_labels):
break
return cluster_labels
# ############################################################
# ### 欠陥1の修正: 制約付きクラスタリング実行関数を修正 ###
# ############################################################
def perform_constrained_clustering():
"""Perform constrained clustering based on user-provided constraints."""
if GLOBAL_STATE["embeddings"] is None:
return "No embeddings available. Please create embeddings first.", None
# Prepare constraints for COP-KMeans
ml_constraints = []
cl_constraints = []
fixed_labels = {}
for constraint_type, idx1, idx2_or_cluster in GLOBAL_STATE["constraints"]:
if constraint_type == "must-link":
ml_constraints.append((idx1, idx2_or_cluster))
elif constraint_type == "cannot-link":
cl_constraints.append((idx1, idx2_or_cluster))
elif constraint_type == "fixed-cluster":
fixed_labels[idx1] = idx2_or_cluster
k = GLOBAL_STATE["current_k"]
# Run constrained K-means
new_labels = cop_kmeans(
GLOBAL_STATE["embeddings"],
k,
ml=ml_constraints,
cl=cl_constraints,
fixed_labels=fixed_labels
)
if new_labels is None:
return "Constrained clustering failed. Constraints may be inconsistent.", None
GLOBAL_STATE["cluster_labels"] = new_labels
GLOBAL_STATE["silhouette_scores"] = silhouette_samples(
GLOBAL_STATE["embeddings"],
GLOBAL_STATE["cluster_labels"]
)
# Update representative images after re-clustering
GLOBAL_STATE["representative_images"] = get_representative_images(
GLOBAL_STATE["cluster_labels"],
n_representatives=1
)
return f"Performed constrained clustering with {k} clusters.", None
# --------------------------------------------------------------
# Finalization and Export
# --------------------------------------------------------------
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
return super(NumpyEncoder, self).default(obj)
def update_final_labels(*labels):
for i in range(GLOBAL_STATE["current_k"]):
# Add a check to ensure the label is not None before processing
if labels[i] is None:
error_msg = f"<p class='feedback red'>Error in Cluster {i}: Final label cannot be empty. Please provide a label. / クラスタ{i}のエラー: 最終ラベルは空にできません。ラベルを入力してください。</p>"
return gr.update(value=error_msg, visible=True), gr.update(visible=False), gr.update(interactive=False)
stripped_label = labels[i].strip()
if not stripped_label:
error_msg = f"<p class='feedback red'>Error in Cluster {i}: Final label cannot be empty. / クラスタ{i}のエラー: 最終ラベルは空にできません。</p>"
return gr.update(value=error_msg, visible=True), gr.update(visible=False), gr.update(interactive=False)
if ',' in stripped_label:
error_msg = f"<p class='feedback red'>Error in Cluster {i}: Label '{labels[i]}' contains a comma. Please use a single word or phrase. / クラスタ{i}のエラー: ラベル「{labels[i]}」にカンマが含まれています。単一の単語またはフレーズを使用してください。</p>"
return gr.update(value=error_msg, visible=True), gr.update(visible=False), gr.update(interactive=False)
for i, label in enumerate(labels):
if i < GLOBAL_STATE["current_k"]:
GLOBAL_STATE["label_dict"][str(i)] = label.strip()
end_time = time.time()
GLOBAL_STATE["annotation_end_time"] = end_time
if GLOBAL_STATE.get("annotation_start_time"):
duration = end_time - GLOBAL_STATE["annotation_start_time"]
GLOBAL_STATE["annotation_duration_seconds"] = duration
logger.info(f"Annotation task time: {duration:.2f} seconds.")
guidance_message = """
<div class='feedback green' style='text-align: left;'>
<p><b>Final labels updated. / 最終ラベルを更新しました。</b></p>
<p>Please take a <b>10-minute break</b> before proceeding to the next step. After the break, please move to the "Evaluation & Export" tab.</p>
<p>次のステップに進む前に<b>10分間の休憩</b>を取ってください。休憩後、「評価とエクスポート」タブに進んでください。</p>
</div>
"""
return gr.update(value="", visible=False), gr.update(value=guidance_message, visible=True), gr.update(
interactive=True)
def export_results(participant_id):
if not participant_id:
return None, "<p class='feedback red'>Participant ID is missing.</p>"
args = get_parameters()
pipeline_path = os.path.join(args.output_dir, participant_id)
os.makedirs(pipeline_path, exist_ok=True)
results_path = os.path.join(args.results_dir, participant_id)
os.makedirs(results_path, exist_ok=True)
json_filename = f"{args.labels_name}_{participant_id}.json"
pipeline_json_path = os.path.join(pipeline_path, json_filename)
results_json_path = os.path.join(results_path, json_filename)
logger.info(f"Preparing to export results for participant {participant_id}")
try:
import sklearn
import transformers
versions = {
"torch": torch.__version__, "sklearn": sklearn.__version__,
"transformers": transformers.__version__, "gradio": gr.__version__,
}
except Exception as e:
versions = {"error": f"Could not get versions: {e}"}
export_data = []
if GLOBAL_STATE.get("image_paths") and GLOBAL_STATE.get("cluster_labels") is not None:
initial_kmeans_labels = GLOBAL_STATE.get("initial_kmeans_labels")
initial_label_dict = GLOBAL_STATE.get("initial_label_dict", {})
for i, (img_path, cluster_id) in enumerate(zip(GLOBAL_STATE["image_paths"], GLOBAL_STATE["cluster_labels"])):
manually_labeled = any(c[0] == "fixed-cluster" and c[1] == i for c in GLOBAL_STATE.get("constraints", []))
initial_cluster_id = None
initial_emotion_label = ""
if initial_kmeans_labels is not None and i < len(initial_kmeans_labels):
initial_cluster_id = int(initial_kmeans_labels[i])
initial_emotion_label = initial_label_dict.get(str(initial_cluster_id), "")
export_data.append({
"image_file": os.path.basename(img_path),
"image_path": img_path,
"cluster_id": int(cluster_id),
"emotion_label": GLOBAL_STATE.get("label_dict", {}).get(str(cluster_id), ""),
"initial_kmeans_cluster_id": initial_cluster_id,
"initial_kmeans_emotion_label": initial_emotion_label,
"manually_labeled": manually_labeled,
"boundary_sample": i in GLOBAL_STATE.get("boundary_samples", [])
})
json_data = {
"metadata": {
"participant_id": participant_id,
"num_clusters_hitl": GLOBAL_STATE.get("current_k"),
"num_clusters_initial": len(initial_label_dict) if initial_label_dict else None,
"cluster_labels_initial": initial_label_dict,
"cluster_labels": GLOBAL_STATE["label_dict"],
"constraints": [{"type": c[0], "sample_idx": c[1], "value": c[2]} for c in
GLOBAL_STATE.get("constraints", [])],
"evaluation_choice": GLOBAL_STATE.get("evaluation_choice"),
"evaluation_layout_is_left_hitl": GLOBAL_STATE.get("evaluation_layout_is_left_hitl"),
"annotation_duration_seconds": GLOBAL_STATE.get("annotation_duration_seconds"),
"objective_scores": {
"hitl_silhouette": GLOBAL_STATE.get("hitl_silhouette_score"),
"kmeans_matched_silhouette": GLOBAL_STATE.get("kmeans_silhouette_score"),
},
"system_info": {
"random_seed_used": GLOBAL_STATE.get("random_seed"),
"script_parameters": vars(args),
"library_versions": versions,
},
},
"samples": export_data
}
try:
with open(pipeline_json_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, ensure_ascii=False, indent=2, cls=NumpyEncoder)
logger.info(f"Successfully saved pipeline input to: {pipeline_json_path}")
with open(results_json_path, 'w', encoding='utf-8') as f:
json.dump(json_data, f, ensure_ascii=False, indent=2, cls=NumpyEncoder)
logger.info(f"Successfully saved final result to: {results_json_path}")
except Exception as e:
logger.error(f"Failed to write export files: {e}")
error_msg = f"<p class='feedback red'>An error occurred during file export: {e}</p>"
return gr.update(visible=False), error_msg
upload_link = "https://drive.google.com/drive/folders/1ZhsVRTs-Tb_-9mxvIyxAb6K2HbnuRPVw?usp=sharing"
status_message = f"""
<div class='feedback green' style='text-align: left;'>
<p><b>エクスポートが完了しました。/ Export complete.</b></p>
<p>上のボタンからJSONファイルをダウンロードし、指定された場所にアップロードして実験を終了してください。ご協力ありがとうございました。</p>
<p>Please download the JSON file and upload it to the designated location. Thank you for your cooperation.</p>
<p><b>アップロード先:</b> <a href='{upload_link}' target='_blank'>{upload_link}</a></p>
</div>"""
return gr.update(value=results_json_path, visible=True), status_message
# --------------------------------------------------------------
# Gradio Interface
# --------------------------------------------------------------
def create_gradio_interface():
args = get_parameters()
css = """
.gradio-container { font-family: 'Arial', sans-serif; }
.feedback { padding: 10px; border-radius: 5px; font-weight: bold; text-align: center; margin-top: 10px; }
.feedback.green { background-color: #e6ffed; color: #2f6f4a; }
.feedback.blue { background-color: #e6f3ff; color: #0056b3; }
.feedback.red { background-color: #ffe6e6; color: #b30000; }
.gr-form {gap: 10px !important;}
label.label-info span {font-size: 1em !important; color: #444 !important;}
.cluster-group { margin-bottom: 25px !important; padding-top: 15px !important; border-top: 1px solid #eee !important;}
.styled-button { border: 1px solid #ccc !important; font-weight: bold !important; }
.gr-button-primary { background-color: #007bff !important; color: white !important; border-color: #007bff !important; }
.gr-button-secondary { background-color: #f8f9fa !important; color: #343a40 !important; border-color: #ced4da !important; }
.gr-button-secondary:hover { background-color: #e2e6ea !important; }
.cluster-gallery-container { border: 1px solid #ddd; border-radius: 8px; padding: 10px; margin-bottom: 15px; background-color: #fdfdfd; }
"""
with gr.Blocks(title="HitL Clustering Experiment", css=css) as app:
gr.Markdown("# Human-in-the-Loop Clustering Experiment / HitLクラスタリング実験")
with gr.Tabs() as tabs:
with gr.TabItem("1. Setup / セットアップ") as tab_setup:
gr.Markdown("## (A) Participant Information / 参加者情報")
gr.Markdown("Please enter your participant ID and click 'Confirm'. / 参加者IDを入力して「確定」を押してください。")
with gr.Row():
participant_id_input = gr.Textbox(label="Participant ID", placeholder="e.g., P01")
confirm_id_btn = gr.Button("Confirm / 確定", variant="primary")
setup_warning = gr.Markdown(visible=False)
with gr.Group(visible=False) as setup_main_group:
gr.Markdown("---")
gr.Markdown("## (B) Instructions & Data Loading / 注意事項とデータ読み込み")
gr.Markdown(
"""<div style='padding: 15px; border: 1px solid #f0ad4e; border-radius: 5px; background-color: #fcf8e3;'><h4>注意事項 / Instructions</h4><ul><li>途中で止めたりせず最後まで続けてください。ファイルをアップロードして完了となります。/ Please continue until the end without stopping. The experiment is complete when you upload the file.</li><li>参加者番号は「P数字2桁」の形式でお願いします (例: P01)。/ Please use the format "P" followed by two digits for the participant number (e.g., P01).</li><li>静かな環境で集中して行ってください。/ Please perform the task in a quiet and focused environment.</li><li>ブラウザーをリロードしないでください (データが破損します)。/ Do not reload the browser (this will corrupt the data).</li><li>ブラウザーはSafari以外を使ってください。/ Please use a browser other than Safari.</li></ul></div>""")
with gr.Row():
gr.Textbox(label="Dataset Directory", value=args.dataset_dir, interactive=False)
gr.Textbox(label="Image Directory", value=args.image_dir, interactive=False)
gr.Textbox(label="Bounding Box JSON", value=args.bbox_json, interactive=False)
gr.Markdown("## (C) Create Image Embeddings / 画像埋め込みの作成")
gr.Markdown(
"Click the button below to start. This may take a few minutes. **Please wait.** / 下のボタンをクリックして開始します。**しばらくお待ち下さい。**")
create_emb_btn = gr.Button("Create Embeddings / 埋め込みを作成", variant="primary")
emb_status = gr.Markdown("Waiting to start...")
embedding_done_msg = gr.Markdown(visible=False)
with gr.TabItem("2. Initial Clustering / 初期クラスタリング", interactive=False) as tab_cluster:
gr.Markdown("## (D) Initial Clustering / 初期クラスタリング")
gr.Markdown(
"First, click the button to perform initial clustering. / まず、ボタンをクリックして初期クラスタリングを実行してください。")
cluster_btn = gr.Button("Perform Initial Clustering / クラスタリングを開始", variant="primary")
cluster_status = gr.Markdown()
with gr.Group(visible=False) as initial_annotation_group:
gr.Markdown("---")
gr.Markdown("## (E) Annotate Initial Clusters / 初期クラスタの注釈付け")
gr.Markdown("""
**この作業はPCで行ってください。**<br>
この画像に写っているキャラクターの顔の上半分の表情が、どのような感情を表しているように見えるか、英語で記述してください。<br>
- 単語(例: happy)でも、短いフレーズ(例1: very angry, 例2: a little surprised, 例3: sad with little surprise)でも構いません。<br>
- 必ず一つの単語またはフレーズを入れてください.決して複数の単語やフレーズ(例:happy, sad) は入れてはいけません.<br>
- 他の画像や他の人の回答と同じような表現になっても問題ありません。<br>
**AIに英語の表現を聞くのは構いませんが 、画像の感情そのものをAIに尋ねるのは避けてください。**
<hr>
**Please perform this task on a PC.**<br>
Please describe in English what emotion the upper half of the character's face in this image appears to express.<br>
- It can be a single word (e.g., happy) or a short phrase (e.g., very angry, a little surprised, sad with little surprise).<br>
- You must enter only one word or phrase. Never enter multiple words or phrases (e.g., happy, sad).<br>
- It is okay if your expression is similar to those for other images or other people's answers.<br>
**You may ask an AI for English expressions, but please avoid asking the AI about the emotion of the image itself.**
""")
initial_labels_inputs = []
with gr.Column():
for i in range(20): # Max 20 clusters
with gr.Group(elem_classes="cluster-group",
visible=(i < GLOBAL_STATE["current_k"])) as initial_group:
gr.Markdown(f"### Cluster {i}")
gallery = gr.HTML()
label_input = gr.Textbox(
label="ここに上半分の表情が示している感情を英語で入力してください.単語(例: happy)でも、短いフレーズ(例1: very angry, 例2: a little surprised, 例3: sad with little surprise)でも構いません。一つの単語またはフレーズを入れてください.決して複数の単語やフレーズ(例:「happy, sad」) は入れてはいけません. "
"(Enter here in English the emotion indicated by the upper half of the facial expression. It can be a word (e.g. happy) or a short phrase (e.g. 1: very angry, 2: a little surprised, 3: sad with a little surprise). Never include more than one word or phrase (e.g., “happy, sad”).)",
elem_classes="label-info")
initial_labels_inputs.append((initial_group, gallery, label_input))
update_initial_btn = gr.Button("Update Cluster Labels / クラスタラベルを更新", variant="primary")
initial_labels_status = gr.Markdown()
initial_clustering_done_msg = gr.Markdown(visible=False)
with gr.TabItem("3. Boundary Samples & Annotation / 境界サンプルの注釈付け", interactive=False) as tab_boundary:
gr.Markdown("## (F) Extract and Label Boundary Samples / 境界サンプルの抽出と注釈付け")
gr.Markdown(
"""まず「境界サンプルを抽出」ボタンを押してください。次に、表示される画像を確認します。
<br>- もし画像が現在のクラスタに合っていると思えば、何もしないで「次のサンプル」へ進んでください。
<br>- もし別の感情のクラスタに属すると思えば、「既存クラスタへの割り当て」から適切なクラスタのボタンを押してください。
<br>- もし既存のどのクラスタにも当てはまらない新しい感情だと思えば、「新規クラスタの作成」に感情ラベルを入力し、「新規クラスタを作成」ボタンを押してください。
<br>- すべての画像のラベルに変更がなければ,ラベリングが完了し次に進みます。
<hr>First, press the 'Extract Boundary Samples' button. Then, check the image displayed.
<br>- If you think the image fits the current cluster, do nothing and proceed to the 'Next Sample'.
<br>- If you think it belongs to a different emotion cluster, press the appropriate cluster button under 'Assign to Existing Cluster'.
<br>- If you think it represents a new emotion, enter a label under 'Create New Cluster' and press the button.
<br>- If the labels of all images are unchanged, labeling is complete and proceed.""")
extract_btn = gr.Button("Extract Boundary Samples / 境界サンプルを抽出", variant="primary")
extract_status = gr.Markdown()
with gr.Group(visible=False) as boundary_annotation_group:
with gr.Row():
sample_image = gr.Image(label="Boundary Sample", type="pil")
sample_status = gr.HTML()
with gr.Row():
prev_btn = gr.Button("← Previous", elem_classes="styled-button")
next_btn = gr.Button("Next →", elem_classes="styled-button")
gr.Markdown("#### Assign to Existing Cluster / 既存クラスタへの割り当て")
cluster_buttons = []
with gr.Column():
for i in range(0, 20, 5):
with gr.Row():
for j in range(i, min(i + 5, 20)):
btn = gr.Button(f"Cluster {j}", visible=(j < GLOBAL_STATE["current_k"]),
elem_classes="styled-button")
cluster_buttons.append(btn)
gr.Markdown("#### Create New Cluster / 新規クラスタの作成")
with gr.Row():
new_label_text = gr.Textbox(
label="ここに上半分の表情が示している感情を英語で入力してください. "
"(Enter here in English the emotion indicated by the upper half of the facial expression.¥",
elem_classes="label-info")
create_new_btn = gr.Button("Create New Cluster", elem_classes="styled-button")
recluster_guidance = gr.Markdown(
"""
<div class='feedback blue' style='text-align: left;'>
<p><b>アノテーションを続けてください / Please continue annotating:</b></p>
<p>すべての境界サンプルの確認が完了すると(「Next →」で最後のサンプルに到達すると)、再クラスタリングボタンが表示されます。</p>
<p>The re-clustering button will appear once you have reviewed all boundary samples (by reaching the last sample with "Next →").</p>
</div>
""",
visible=False
)
with gr.Group(visible=False) as recluster_group:
attention_text = gr.Markdown(
"""
<div class='feedback blue' style='text-align: left;'>
<p><b>注意 / Attention:</b></p>
<p>以下の「制約を適用して再クラスタリング」ボタンを押す前に,境界サンプルの割当てがすべて正しく行われているかを確認してください。<br>
<p>Before pressing the 'Apply Constrained Clustering' button below, check that all boundary sample assignments are correct.</p>
</div>
"""
)
recluster_btn = gr.Button("Apply Constrained Clustering / 制約を適用して再クラスタリング",
variant="primary")
recluster_status = gr.Markdown()
boundary_done_msg = gr.Markdown(visible=False)
with gr.TabItem("4. Finalize / 最終化", interactive=False) as tab_finalize:
gr.Markdown("## (G) Finalize Cluster Labels / クラスタラベルの最終化")
gr.Markdown(
"Review the final clusters. Please check for spelling mistakes. / 最終的なクラスタを確認し、スペルミスがないか確認してください。")
final_labels_inputs = []
with gr.Column():
for i in range(20):
with gr.Group(visible=False, elem_classes="cluster-group") as final_group:
gr.Markdown(f"### Cluster {i}")
gallery = gr.HTML()
label_input = gr.Textbox(label=f"Final Label for Cluster {i}")
final_labels_inputs.append((final_group, gallery, label_input))
update_final_btn = gr.Button("Update Final Labels / 最終ラベルを更新", variant="primary")
final_status = gr.Markdown(visible=False)
final_guidance_msg = gr.Markdown(visible=False)
with gr.TabItem("5. Evaluation & Export / 評価とエクスポート", interactive=False) as tab_evaluation:
gr.Markdown("## (H) Comparative Evaluation / 比較評価")
gr.Markdown(
"""
<h3 style='text-align: center; margin-bottom: 20px;'>
以下に2種類のクラスタリング結果が表示されています。<br>
それぞれのクラスタの代表画像をよく見て、データセット全体の表情をより良く分割していると感じる方を正直に選んでください。
</h3>
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Clustering Result A")
gallery_A = gr.HTML()
choose_A_btn = gr.Button("Choose Result A / 結果Aを選択", variant="primary")
with gr.Column(scale=1):
gr.Markdown("### Clustering Result B")
gallery_B = gr.HTML()
choose_B_btn = gr.Button("Choose Result B / 結果Bを選択", variant="primary")
evaluation_status = gr.Markdown(visible=False)
with gr.Group(visible=False) as export_group:
gr.Markdown("---")
gr.Markdown("## (I) Export Results / 結果のエクスポート")
gr.Markdown(
"Thank you for your evaluation. Please click the button below to export your results and upload the file to the designated location. / 評価ありがとうございました。下のボタンを押して結果をエクスポートし、指定された場所にファイルをアップロードしてください。")
export_btn = gr.Button("Export Results / 結果をエクスポート", variant="primary")
download_file = gr.File(label="Download JSON", visible=False)
export_status = gr.Markdown()
# --- Event Handlers ---
def check_and_confirm_id(pid):
pid = pid.strip()
if re.fullmatch(r"P\d{2}", pid):
GLOBAL_STATE["participant_id"] = pid
return gr.update(visible=False), gr.update(visible=True)
else:
error_message = """
<p class='feedback red'>
<b>Invalid Participant ID / 無効な参加者IDです</b><br>
The ID must be in the format 'P' followed by exactly two digits (e.g., P01, P23).<br>
IDは「P」に続いて数字2桁の形式である必要があります(例: P01, P23)。
</p>
"""
return gr.update(value=error_message, visible=True), gr.update(visible=False)
confirm_id_btn.click(check_and_confirm_id, [participant_id_input], [setup_warning, setup_main_group])
def handle_create_embeddings_flow():
args = get_parameters()
final_status = "Embedding creation failed."
for status in create_embeddings(args.image_dir, args.bbox_json):
yield status, gr.update(), gr.update(), gr.update()
final_status = status
GLOBAL_STATE["annotation_start_time"] = time.time()
logger.info(f"Annotation timer started at {GLOBAL_STATE['annotation_start_time']}.")
done_msg = "<p class='feedback green'>Embedding creation complete. Please proceed to the 'Initial Clustering' tab. / 埋め込みの作成が完了しました。「初期クラスタリング」タブに進んでください。</p>"
yield final_status, gr.update(visible=False), gr.update(value=done_msg, visible=True), gr.update(
interactive=True)
create_emb_btn.click(handle_create_embeddings_flow, [],
[emb_status, create_emb_btn, embedding_done_msg, tab_cluster])
def create_cluster_gallery_html(reps, cid, n_images=1):
# repsのキーは整数なので、cidを整数に変換
cid = int(cid)
if cid not in reps: return ""
html = "<div style='display: flex; flex-wrap: wrap; gap: 10px;'>"
import base64
from io import BytesIO
for img_path, _, _ in reps[cid][:n_images]:
try:
img = GLOBAL_STATE["original_images"].get(img_path) or Image.open(img_path).convert('RGB')
masked_img = create_masked_image(img)
masked_img.thumbnail((360, 360))
buffer = BytesIO()
masked_img.save(buffer, format="PNG")
b64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
html += f"<img src='data:image/png;base64,{b64}' style='border-radius: 4px; border: 1px solid #ddd;'>"
except Exception as e:
logger.error(f"Gallery error: {e}")
html += "</div>"
return html
def handle_perform_clustering_flow():
status = perform_initial_clustering()
updates = [gr.update(visible=True), gr.update(visible=False), status]
reps = GLOBAL_STATE["representative_images"]
k = GLOBAL_STATE["current_k"]
for i in range(20):
if i < k:
updates.extend([gr.update(visible=True), create_cluster_gallery_html(reps, i), ""])
else:
updates.extend([gr.update(visible=False), "", ""])
return updates
cluster_btn.click(handle_perform_clustering_flow, [],
[initial_annotation_group, cluster_btn, cluster_status] + [item for sublist in
initial_labels_inputs for item in
sublist])
update_initial_btn.click(update_initial_labels,
[label for _, _, label in initial_labels_inputs],
[initial_labels_status, update_initial_btn, initial_clustering_done_msg, tab_boundary])
def handle_extract_samples_flow():
status = extract_boundary_samples()
if not GLOBAL_STATE["boundary_samples"]:
no_samples_msg = "<p class='feedback blue'>No new boundary samples found. You can proceed to the next step. / 新しい境界サンプルは見つかりませんでした。次のステップに進んでください。</p>"
return [
gr.update(value=no_samples_msg),
gr.update(visible=False), gr.update(visible=False), gr.update(), gr.update(),
] + [gr.update(visible=False)] * 20 + [
gr.update(visible=False), gr.update(visible=False), gr.update(interactive=False),
gr.update(interactive=False),
]
img, s_status, _, button_updates = get_current_boundary_sample()
total_samples = len(GLOBAL_STATE.get("boundary_samples", []))
return [
status,
gr.update(visible=True), gr.update(visible=True, value=img),
s_status, gr.update(value=""),
] + button_updates + [
gr.update(visible=False), gr.update(visible=True),
gr.update(interactive=False), gr.update(interactive=(total_samples > 1))
]
outputs_for_boundary_tab = [
extract_status, boundary_annotation_group,
sample_image, sample_status, new_label_text
] + cluster_buttons + [
recluster_group, recluster_guidance, prev_btn, next_btn
]
def move_sample(direction):
if not GLOBAL_STATE.get("boundary_samples"):
return [gr.update()] * len(outputs_for_boundary_tab)
total_samples = len(GLOBAL_STATE['boundary_samples'])
current_index = GLOBAL_STATE['boundary_index']
if direction == "prev":
new_index = max(0, current_index - 1)
else:
new_index = min(total_samples, current_index + 1)
GLOBAL_STATE["boundary_index"] = new_index
if new_index == total_samples:
completion_message = """
<div class='feedback green' style='text-align: center; padding: 20px;'>
<h2>All samples reviewed.</h2>
<p>To apply your changes, please press the 'Apply Constrained Clustering' button shown below.</p>
<hr>
<p>すべてのサンプルの確認が完了しました。変更を適用するには、下に表示されている「制約を適用して再クラスタリング」ボタンを押してください。</p>
</div>
"""
return [
gr.update(), gr.update(visible=True),
gr.update(visible=False, value=None), gr.update(value=completion_message),
gr.update(value=""),
] + [gr.update(visible=False)] * 20 + [
gr.update(visible=True), gr.update(visible=False),
gr.update(interactive=True), gr.update(interactive=False)
]
else:
img, status, new_label, button_updates = get_current_boundary_sample()
return [
gr.update(), gr.update(visible=True),
gr.update(visible=True, value=img), status, new_label,
] + button_updates + [
gr.update(visible=False), gr.update(visible=True),
gr.update(interactive=(new_index > 0)), gr.update(interactive=True)
]
extract_btn.click(handle_extract_samples_flow, [], outputs_for_boundary_tab)
prev_btn.click(partial(move_sample, "prev"), [], outputs_for_boundary_tab)
next_btn.click(partial(move_sample, "next"), [], outputs_for_boundary_tab)
for i, btn in enumerate(cluster_buttons):
btn.click(partial(assign_to_cluster, i), [],
[recluster_status, sample_image, sample_status] + cluster_buttons + [recluster_group,
recluster_guidance])
create_new_btn.click(handle_create_new_cluster, [new_label_text],
[recluster_status, sample_image, sample_status, new_label_text] + cluster_buttons + [
recluster_group, recluster_guidance])
def handle_recluster_flow():
status, _ = perform_constrained_clustering()
if GLOBAL_STATE["boundary_samples_labeled"]:
done_msg = "<p class='feedback blue'>再クラスタリングが完了しました。「境界サンプルを抽出」ボタンを再度押して、この手順を繰り返してください。<br>Re-clustering complete. Please press 'Extract Boundary Samples' again to repeat this procedure.</p>"
else:
done_msg = "<p class='feedback green'>ラベルの変更はありませんでした。次の「最終化」タブに進んでください。<br>No labels were changed. Proceed to the 'Finalize' tab.</p>"
# UIを更新するために、境界サンプルの最初の状態を再取得
img, sample_status, _, button_updates = get_current_boundary_sample()
return status, gr.update(interactive=True), gr.update(value=done_msg,
visible=True), img, sample_status, *button_updates
recluster_btn.click(handle_recluster_flow, [], [recluster_status, tab_finalize, boundary_done_msg, sample_image,
sample_status] + cluster_buttons)
def setup_finalize_tab_flow():
k = GLOBAL_STATE["current_k"]
reps = get_representative_images(GLOBAL_STATE["cluster_labels"], n_representatives=1)
updates = []
for i in range(20): # UIコンポーネントの数に合わせる
if i < k:
gallery_html = create_cluster_gallery_html(reps, i, n_images=1)
label = GLOBAL_STATE["label_dict"].get(str(i), "")
updates.extend([gr.update(visible=True), gallery_html, label])
else:
updates.extend([gr.update(visible=False), "", ""])
return updates
tab_finalize.select(setup_finalize_tab_flow, [], [item for sublist in final_labels_inputs for item in sublist])
update_final_btn.click(
update_final_labels,
[label for _, _, label in final_labels_inputs],
[final_status, final_guidance_msg, tab_evaluation]
)
def get_sorted_cluster_ids(labels):
unique_cids = np.unique(labels)
if len(unique_cids) <= 1:
return unique_cids.tolist()
centroids = []
for cid in unique_cids:
centroid = np.mean(GLOBAL_STATE["embeddings"][labels == cid], axis=0)
centroids.append(centroid)
centroids = np.array(centroids)
if len(centroids) < 2:
return unique_cids.tolist()
tsne = TSNE(n_components=1, random_state=GLOBAL_STATE["random_seed"], perplexity=min(5, len(centroids) - 1),
init='pca', learning_rate='auto')
try:
projected_centroids = tsne.fit_transform(centroids)
sorted_indices = np.argsort(projected_centroids.flatten())
return unique_cids[sorted_indices].tolist()
except Exception as e:
logger.warning(f"Could not perform t-SNE on centroids, returning unsorted. Error: {e}")
return unique_cids.tolist()
def create_cluster_gallery_html_for_eval(reps, sorted_cids):
html = ""
for cid in sorted_cids:
html += "<div class='cluster-gallery-container'>"
html += "<div style='display: flex; flex-wrap: wrap; gap: 10px; justify-content: center;'>"
import base64
from io import BytesIO
# repsのキーは整数なので変換
rep_list = reps.get(int(cid), [])
for img_path, _, _ in rep_list[:1]:
try:
img = GLOBAL_STATE["original_images"].get(img_path) or Image.open(img_path).convert('RGB')
masked_img = create_masked_image(img)
masked_img.thumbnail((360, 360))
buffer = BytesIO()
masked_img.save(buffer, format="PNG")
b64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
html += f"<img src='data:image/png;base64,{b64}' style='border-radius: 4px; border: 1px solid #eee;'>"
except Exception as e:
logger.error(f"Gallery error: {e}")
html += "</div></div>"
return html
from sklearn.metrics import silhouette_score
def setup_evaluation_tab():
k = GLOBAL_STATE["current_k"]
kmeans = KMeans(n_clusters=k, random_state=GLOBAL_STATE["random_seed"], n_init=10)
GLOBAL_STATE["kmeans_matched_labels"] = kmeans.fit_predict(GLOBAL_STATE["embeddings"])
if GLOBAL_STATE["embeddings"] is not None:
if len(np.unique(GLOBAL_STATE["cluster_labels"])) > 1:
GLOBAL_STATE["hitl_silhouette_score"] = silhouette_score(GLOBAL_STATE["embeddings"],
GLOBAL_STATE["cluster_labels"])
else:
GLOBAL_STATE["hitl_silhouette_score"] = -1 # Cannot compute for 1 cluster
if len(np.unique(GLOBAL_STATE["kmeans_matched_labels"])) > 1:
GLOBAL_STATE["kmeans_silhouette_score"] = silhouette_score(GLOBAL_STATE["embeddings"],
GLOBAL_STATE["kmeans_matched_labels"])
else:
GLOBAL_STATE["kmeans_silhouette_score"] = -1
hitl_reps = get_representative_images(GLOBAL_STATE["cluster_labels"], n_representatives=1)
kmeans_reps = get_representative_images(GLOBAL_STATE["kmeans_matched_labels"], n_representatives=1)
GLOBAL_STATE["kmeans_matched_reps"] = kmeans_reps
sorted_hitl_cids = get_sorted_cluster_ids(GLOBAL_STATE["cluster_labels"])
sorted_kmeans_cids = get_sorted_cluster_ids(GLOBAL_STATE["kmeans_matched_labels"])
hitl_gallery_html = create_cluster_gallery_html_for_eval(hitl_reps, sorted_hitl_cids)
kmeans_gallery_html = create_cluster_gallery_html_for_eval(kmeans_reps, sorted_kmeans_cids)
is_left_hitl = random.choice([True, False])
GLOBAL_STATE["evaluation_layout_is_left_hitl"] = is_left_hitl
if is_left_hitl:
gallery_A_html, gallery_B_html = hitl_gallery_html, kmeans_gallery_html
else:
gallery_A_html, gallery_B_html = kmeans_gallery_html, hitl_gallery_html
return gallery_A_html, gallery_B_html
tab_evaluation.select(
setup_evaluation_tab,
[],
[gallery_A, gallery_B]
)
def handle_evaluation_choice(choice):
is_left_hitl = GLOBAL_STATE["evaluation_layout_is_left_hitl"]
if (choice == 'A' and is_left_hitl) or (choice == 'B' and not is_left_hitl):
final_choice = "HitL"
else:
final_choice = "KMeans_matched"
GLOBAL_STATE["evaluation_choice"] = final_choice
status_msg = f"<p class='feedback green'>You chose Result {choice} ({final_choice}). Thank you! Please proceed to export your results. / 結果{choice} ({final_choice}) を選択しました。ありがとうございます。結果をエクスポートしてください。</p>"
return gr.update(value=status_msg, visible=True), gr.update(visible=True), gr.update(
interactive=False), gr.update(interactive=False)
choose_A_btn.click(
partial(handle_evaluation_choice, 'A'),
[],
[evaluation_status, export_group, choose_A_btn, choose_B_btn]
)
choose_B_btn.click(
partial(handle_evaluation_choice, 'B'),
[],
[evaluation_status, export_group, choose_A_btn, choose_B_btn]
)
export_btn.click(export_results, [participant_id_input], [download_file, export_status])
return app
def get_parameters():
parser = ArgumentParser()
parser.add_argument("--dataset_dir", type=str, default="./data/lapwing",
help="Path to the root directory of the input dataset.")
parser.add_argument("--image_dir", type=str, default="images",
help="Subdirectory for images within the dataset directory.")
parser.add_argument("--text_dir", type=str, default="texts",
help="Subdirectory for text files (like bbox) within the dataset directory.")
parser.add_argument("--bbox_json", type=str, default="bounding_boxes.json",
help="Name of the bounding box JSON file.")
parser.add_argument("--output_dir", type=str, default="./experiments",
help="Directory to save the experiment results.")
parser.add_argument("--labels_name", type=str, default="HitL_results", help="Prefix for the output JSON filename.")
parser.add_argument("--results_dir", type=str, default="./results",
help="Directory to save the final human evaluation and annotation results.")
try:
args = parser.parse_args()
except SystemExit:
args = parser.parse_args([])
args.image_dir = os.path.join(args.dataset_dir, args.image_dir)
args.text_dir = os.path.join(args.dataset_dir, args.text_dir)
args.bbox_json = os.path.join(args.text_dir, args.bbox_json)
return args
def main():
set_random_seed()
app = create_gradio_interface()
app.launch(share=True)
def set_random_seed():
seed = GLOBAL_STATE["random_seed"]
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
logger.info(f"Set random seed to {seed}")
if __name__ == "__main__":
main() |