File size: 3,528 Bytes
6e9a4ca 6f76ded 6e9a4ca 6f76ded 6e9a4ca 4a317df 6e9a4ca 9af6e91 7523de3 9af6e91 6e9a4ca 4a317df 6e9a4ca 4a317df 6e9a4ca 4a317df 6e9a4ca 4a317df 6e9a4ca 9af6e91 6e9a4ca 9af6e91 4a317df 6e9a4ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
import soundfile as sf
import numpy as np
import os
import torch
import argparse
SAMPLE_RATE = 8000
def get_sample_rate(audio_file_path):
"""
Get the sample rate of an audio file
Args:
audio_file_path (str): Path to the audio file
Returns:
int: Sample rate of the audio file
"""
_, sample_rate = sf.read(audio_file_path, always_2d=True)
return sample_rate
def change_sample_rate(input_audio_file_path, output_audio_file_path, sample_rate):
"""
Change the sample rate of an audio file
Args:
input_audio_file_path (str): Path to the input audio file
output_audio_file_path (str): Path to the output audio file
sample_rate (int): Sample rate to change to
"""
os.system(f'ffmpeg -i {input_audio_file_path} -ar {sample_rate} -loglevel error {output_audio_file_path}')
def audio_is_stereo(audio_file_path):
"""
Check if an audio file is stereo
Args:
audio_file_path (str): Path to the audio file
Returns:
bool: True if the audio file is stereo, False otherwise
"""
audio, _ = sf.read(audio_file_path, always_2d=True)
return audio.shape[1] == 2
def set_mono(input_audio_file_path, output_audio_file_path):
"""
Set an audio file to mono
Args:
input_audio_file_path (str): Path to the input audio file
output_audio_file_path (str): Path to the output audio file
"""
os.system(f'ffmpeg -i {input_audio_file_path} -ac 1 -loglevel error {output_audio_file_path}')
def main(args):
# Get input and output files
input = args.input
output = args.input
# Get input and output names
input_name = input.split(".")[0]
output_name = output.split(".")[0]
# Get folder of output file
input_folder = input_name.split("/")[0]
output_folder = "vocals"
input_file_name = input_name.split("/")[1]
output_file_name = output_name.split("/")[1]
# Set input files with 8k sample rate and mono
input_8k = f"{input_name}_8k.wav"
input_8k_mono = f"{input_name}_8k_mono.wav"
# Check if input has 8k sample rate, if not, change it
sr = get_sample_rate(input)
if sr != SAMPLE_RATE:
change_sample_rate(input, input_8k, SAMPLE_RATE)
remove_8k = True
else:
input_8k = input
remove_8k = False
# Check if input is stereo, if yes, set it to mono
if audio_is_stereo(input_8k):
set_mono(input_8k, input_8k_mono)
remove_mono = True
else:
input_8k_mono = input_8k
remove_mono = False
# Separate audio voices
device = 'cuda' if torch.cuda.is_available() else 'cpu'
separation = pipeline(Tasks.speech_separation, model='damo/speech_mossformer_separation_temporal_8k', device=device)
result = separation(input_8k_mono)
# Save separated audio voices
for i, signal in enumerate(result['output_pcm_list']):
save_file = f'{output_folder}/{output_file_name}_speaker{i:003d}.wav'
sf.write(save_file, np.frombuffer(signal, dtype=np.int16), SAMPLE_RATE)
# Remove temporary files
if remove_8k:
os.remove(input_8k)
if remove_mono:
os.remove(input_8k_mono)
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description='Separate speech from a stereo audio file')
argparser.add_argument('input', type=str, help='Input audio file')
args = argparser.parse_args()
main(args) |