File size: 4,764 Bytes
6124669 c9174f6 6124669 c9174f6 6124669 c9174f6 6124669 89dbdbc 6124669 8a59bca 6124669 3a4b39d 6124669 d2fd6d8 6124669 89dbdbc d2fd6d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import sys
import torch.nn.functional as F
import torch
PACKAGE_PARENT = '..'
WISE_DIR = '../wise/'
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, WISE_DIR)))
import numpy as np
from PIL import Image
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from effects.minimal_pipeline import MinimalPipelineEffect
from helpers.visual_parameter_def import minimal_pipeline_presets, minimal_pipeline_bump_mapping_preset, minimal_pipeline_xdog_preset
from helpers import torch_to_np, np_to_torch
from effects import get_default_settings
from demo_config import HUGGING_FACE
st.set_page_config(page_title="Preset Edit Demo", layout="wide")
# @st.cache(hash_funcs={OilPaintEffect: id})
@st.cache(hash_funcs={MinimalPipelineEffect: id})
def local_edits_create_effect():
effect, preset, param_set = get_default_settings("minimal_pipeline")
effect.enable_checkpoints()
effect.cuda()
return effect, param_set
effect, param_set = local_edits_create_effect()
presets = {
"original": minimal_pipeline_presets,
"bump mapped": minimal_pipeline_bump_mapping_preset,
"contoured": minimal_pipeline_xdog_preset
}
st.session_state["action"] = "switch_page_from_presets" # on switchback, remember effect input
active_preset = st.sidebar.selectbox("apply preset: ", ["bump mapped", "contoured", "original"])
blend_strength = st.sidebar.slider("Parameter blending strength (non-hue) : ", 0.0, 1.0, 1.0, 0.05)
hue_blend_strength = st.sidebar.slider("Hue-shift blending strength : ", 0.0, 1.0, 1.0, 0.05)
st.sidebar.text("Drawing options:")
stroke_width = st.sidebar.slider("Stroke width: ", 1, 80, 40)
drawing_mode = st.sidebar.selectbox(
"Drawing tool:", ("freedraw", "line", "rect", "circle", "transform")
)
st.session_state["preset_canvas_key"] ="preset_canvas"
vp = torch.clone(st.session_state["result_vp"])
org_cuda = st.session_state["effect_input"]
# @st.experimental_memo
def greyscale_original(_org_cuda, content_id): #content_id is used for hashing
if HUGGING_FACE:
wsize = 450
img_org_height, img_org_width = _org_cuda.shape[-2:]
wpercent = (wsize / float(img_org_width))
hsize = int((float(img_org_height) * float(wpercent)))
else:
longest_edge = 670
img_org_height, img_org_width = _org_cuda.shape[-2:]
max_width_height = max(img_org_width, img_org_height)
hsize = int((float(longest_edge) * float(float(img_org_height) / max_width_height)))
wsize = int((float(longest_edge) * float(float(img_org_width) / max_width_height)))
org_img = F.interpolate(_org_cuda, (hsize, wsize), mode="bilinear")
org_img = torch.mean(org_img, dim=1, keepdim=True) / 2.0
org_img = torch_to_np(org_img, multiply_by_255=True)[..., np.newaxis].repeat(3, axis=2)
org_img = Image.fromarray(org_img.astype(np.uint8))
return org_img, hsize, wsize
greyscale_img, hsize, wsize = greyscale_original(org_cuda, st.session_state["Content_id"])
coll1, coll2 = st.columns(2)
coll1.header("Draw Mask")
coll2.header("Live Result")
with coll1:
# Create a canvas component
canvas_result = st_canvas(
fill_color="rgba(0, 0, 0, 1)", # Fixed fill color with some opacity
stroke_width=stroke_width,
background_image=greyscale_img,
width=greyscale_img.width,
height=greyscale_img.height,
drawing_mode=drawing_mode,
key=st.session_state["preset_canvas_key"]
)
res_data = None
if canvas_result.image_data is not None:
abc = np_to_torch(canvas_result.image_data.astype(np.float32)).sum(dim=1, keepdim=True).cuda()
img_org_width = org_cuda.shape[-1]
img_org_height = org_cuda.shape[-2]
res_data = F.interpolate(abc, (img_org_height, img_org_width)).squeeze(1)
preset_tensor = effect.vpd.preset_tensor(presets[active_preset], org_cuda, add_local_dims=True)
hue = torch.clone(vp[:,effect.vpd.name2idx["hueShift"]])
vp[:] = preset_tensor * res_data * blend_strength + vp[:] * (1 - res_data * blend_strength)
vp[:, effect.vpd.name2idx["hueShift"]] = \
preset_tensor[:,effect.vpd.name2idx["hueShift"]] * res_data * hue_blend_strength + hue * (1 - res_data * hue_blend_strength)
with torch.no_grad():
result_cuda = effect(org_cuda, vp)
img_res = Image.fromarray((torch_to_np(result_cuda) * 255.0).astype(np.uint8))
coll2.image(img_res)
print(st.session_state["user"], " edited preset")
apply_btn = st.sidebar.button("Apply")
if apply_btn:
st.session_state["result_vp"] = vp
st.info("Note: Press apply to make changes permanent")
|