File size: 19,331 Bytes
9f3ae79
35f2f48
 
d68b424
5f7a1ef
09fe854
b3be966
7bc1b1f
9f3ae79
cfdf0a4
9f3ae79
5f7a1ef
9f3ae79
 
 
 
35f2f48
 
027097d
be6bc50
35f2f48
 
b3be966
45d34ef
35f2f48
 
 
 
cfdf0a4
d68b424
45d34ef
 
290bfe0
45d34ef
 
 
290bfe0
 
d68b424
290bfe0
d68b424
cfdf0a4
9f3ae79
5f7a1ef
 
 
 
7bc1b1f
42ecb2b
cde51b7
 
 
 
5f7a1ef
 
baeac26
9f3ae79
5f7a1ef
aec6e07
9f3ae79
5f7a1ef
 
 
 
 
fc226d3
baeac26
aec6e07
 
 
 
 
611fcc3
aec6e07
 
 
fc0d8a3
57c39e9
fc0d8a3
b34ccad
aec6e07
fc0d8a3
 
 
 
 
57c39e9
fc0d8a3
b34ccad
aec6e07
fc0d8a3
 
 
 
 
57c39e9
fc0d8a3
b34ccad
aec6e07
fc0d8a3
 
 
 
 
aec6e07
fc0d8a3
57c39e9
fc0d8a3
aec6e07
 
fc0d8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c39e9
fc0d8a3
aec6e07
 
aba8231
aec6e07
 
fc0d8a3
aec6e07
57c39e9
1263e08
57c39e9
 
 
 
aec6e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc0d8a3
aec6e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc0d8a3
aec6e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc0d8a3
aec6e07
 
 
 
 
 
 
 
 
 
 
 
 
1263e08
aec6e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc0d8a3
aec6e07
 
 
 
 
 
 
 
 
 
 
 
 
1263e08
09fe854
 
b3be966
7bc1b1f
5f7a1ef
9f3ae79
 
 
 
 
 
 
 
be6bc50
45d34ef
d68b424
290bfe0
45d34ef
fc226d3
1eaeaab
d68b424
 
fc226d3
1eaeaab
d68b424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01cb819
290bfe0
 
 
 
 
 
 
 
01cb819
aba8231
290bfe0
 
 
 
 
 
 
 
01cb819
 
290bfe0
01cb819
 
fc226d3
 
d68b424
 
290bfe0
fc226d3
 
7bc1b1f
01cb819
 
be6bc50
01cb819
 
45d34ef
01cb819
45d34ef
fc226d3
 
1eaeaab
fc226d3
d68b424
 
 
 
fc226d3
baeac26
be6bc50
7bc1b1f
 
 
baeac26
 
 
 
 
290bfe0
baeac26
 
01cb819
 
 
 
 
 
 
 
 
 
 
 
baeac26
 
 
 
42ecb2b
 
 
 
 
 
027097d
 
 
 
d68b424
027097d
aec6e07
 
027097d
 
aec6e07
 
 
 
 
 
 
 
 
 
 
027097d
aec6e07
 
bc8d924
aec6e07
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import faicons as fa
import sys
import os
from ipyleaflet import Map, Marker, LayerGroup, Circle, Icon, AwesomeIcon, DivIcon, basemaps, GeoJSON

import matplotlib.pyplot as plt

from pandas.core.frame import functools
# Load data and compute static values
from borgarlina3_leaflet import create_map, load_and_preprocess_data
from shared import app_dir, tips
from shinywidgets import render_widget 

from shiny import reactive, render
from shiny.express import input, ui

# Import from backend
from data_processing.data_provider import Data_provider

initBackend = Data_provider()
def getScore(cords):
    pass

def generateStops(year):
    geojson_file = f"given_data/cityline_geojson/cityline_{year}.geojson"
    pop_file = "given_data/ibuafjoldi.csv"
    smallarea_file = "given_data/smasvaedi_2021.json"
    dwellings_file = "given_data/ibudir.csv"

    gpdStops, _, all_small_areas = load_and_preprocess_data(geojson_file, pop_file, smallarea_file, dwellings_file)

    points = []
    stopData = {}
    # Assuming your GeoDataFrame is named 'gdf'
    for _, row in gpdStops.iterrows():
        point = row["geometry"]
        color = row["line"]
        if color not in ["red", "yellow", "blue", "green", "purple", "orange"]:
            color = color.split("/") 
        points.append(((point.y, point.x), color))
    return points, all_small_areas

# Add page title and sidebar
ui.page_opts(title="Borgarlínan", fillable=True)

with ui.sidebar(open="open"):

    ui.input_select("year", "Year:", {2025: "2025", 2029: "2029", 2030: "2030"})
    ui.input_slider("rad", "Stop reach radius:", min=200, max=1000, value=400),
    # station_coord, w_density=1, w_income=1, w_age=1):
    ui.input_numeric("w_density", "Density Weight", "1")
    ui.input_numeric("w_income", "Income Weight", "1")
    ui.input_numeric("w_age", "Age Weight", "1")
    

    ui.input_action_button("reset", "Reset zoom")

with ui.layout_columns(col_widths=[8, 4]):
    
    with ui.card(full_screen=True):
        ui.card_header("Capital area")

        
        @render_widget  
        def map():
            return Map(
                basemap=basemaps.CartoDB.Positron)  
    
    
    
        


    
            
    with ui.layout_column_wrap(width="450px"):
            with ui.layout_columns(col_widths=(6, 6), min_height="450px"):
                with ui.value_box(theme="text-red",  showcase=fa.icon_svg("bus", width="50px"),):
                    "Average score"
                    @render.text
                    def render_line_score():
                        score = lineScore().get("red", 0)
                        if score:
                            return str(int(score))
                        else:
                            return str("Pending")
                with ui.value_box(theme="text-blue",showcase=fa.icon_svg("bus", width="50px"),):
                    "Average score"
                    @render.text
                    def render_line_score1():
                        score = lineScore().get("blue", 0)
                        if score:
                            return str(int(score))
                        else:
                            return str("Pending")
                with ui.value_box(theme="text-yellow" ,showcase=fa.icon_svg("bus", width="50px"),):
                    "Average score"
                    @render.text
                    def render_line_score2():
                        score = lineScore().get("orange", 0)
                        if score:
                            return str(int(score))
                        else:
                            return str("Pending")

                
                with ui.value_box(theme="text-green",showcase=fa.icon_svg("bus", width="50px"),):
                    "Average score"
                    @render.text
                    def render_line_score4():
                        score = lineScore().get("green", 0)
                        if score:
                            return str(int(score))
                        else:
                            return str("Pending")
                        
                with ui.value_box(theme="text-purple",showcase=fa.icon_svg("bus", width="50px"),):
                    "Average score"
                    @render.text
                    def render_line_score3():
                        score = lineScore().get("purple", 0)
                        if score:
                            return str(int(score))
                        else:
                            return str("Pending")
                        
                with ui.value_box(theme="text-black",showcase=fa.icon_svg("route", width="50px")):
                    "Total average score"
                    @render.text
                    def render_line_score5():
                        return str(int(sum(lineScore().get(color, 0) for color in ["red", "blue", "orange", "purple", "green"])))

            
            with ui.card(min_height="450px"):                
                with ui.navset_pill(id="tab"):
                    with ui.nav_panel("Score"):
                        
                        @render.text
                        def totalScore():
                            score = scores()
                            return "Total score: " + str(int(score["total_score"]))
                        @render.plot(alt="A pie chart of score contributions from age, income, and density.")
                        def contribution_pie_chart():
                            print("Generating pie chart of contributions")
                            
                            # Get score components
                            score = scores()
                            age_contribution = score["age_score"]
                            income_contribution = score["income_score"]
                            density_contribution = score["density_score"]
                            
                            # Data for the pie chart
                            contributions = [age_contribution, income_contribution, density_contribution]
                            labels = ["Age", "Income", "Density"]
                            colors = ["#FD4D86", "#36DEC2", "#704CB0"]  # Custom colors for the segments
                            
                            # Create a Matplotlib figure
                            fig, ax = plt.subplots(figsize=(5, 5))
                            
                            # Create the pie chart
                            ax.pie(
                                contributions, 
                                labels=labels, 
                                autopct='%1.1f%%', 
                                startangle=90, 
                                colors=colors, 
                                textprops={'fontsize': 12}
                            )
                            
                            # Add a title
                            ax.set_title("Score Contributions", fontsize=16)
                            
                            # Return the figure for rendering in Shiny
                            return fig
                    
                    with ui.nav_panel("Income"):
                        "Income Score"    
                        @render.text
                        def incomeScore():
                            score = scores()
                            return score["income_score"]
                        @render.plot(alt="A chart of income distribution.")
                        def income_plot():
                            print("Generating income distribution bar chart")
                            
                            # Get selected stop coordinates
                            x, y = stop.get()
                            station_coord = (y, x)
                            
                            # Fetch income distribution data from the Data_provider instance
                            income_data = initBackend.get_station_score(station_coord, radius=input.rad())['income_data']  # Assume this returns a dictionary
                            
                            # Example structure: {1: 150, 2: 200, 3: 180, ...}
                            income_brackets = list(income_data.keys())
                            populations = list(income_data.values())
                            
                            # Create a Matplotlib figure
                            fig, ax = plt.subplots(figsize=(6, 3))
                            
                            # Create the bar chart
                            ax.bar(income_brackets, populations, color='#36DEC2')
                            
                            # Customize the plot
                            ax.set_title("Population by Income Bracket")
                            ax.set_xlabel("Income Bracket")
                            ax.set_ylabel("Population")
                            ax.set_xticks(income_brackets)
                            ax.set_xticklabels(income_brackets, rotation=45, ha="right")
                            
                            # Return the figure for rendering in Shiny
                            return fig

                    
                    with ui.nav_panel("Age"):
                        "Age Score" 
                        @render.text
                        def ageScore():
                            score = scores()
                            return score["age_score"]                    
                        @render.plot(alt="A bar chart of age distribution.")
                        def age_plot():
                            print("Generating age distribution bar chart")
                            
                            # Get selected stop coordinates
                            x, y = stop.get()
                            station_coord = (y, x)
                            
                            # Fetch age distribution data from the Data_provider instance
                            age_data = initBackend.get_station_score(station_coord, radius=input.rad())['age_data']  # Assume this returns a dictionary
                            
                            # Example structure: {'0-4 ára': 120, '5-9 ára': 140, ...}
                            age_brackets = list(age_data.keys())
                            populations = list(age_data.values())
                            
                            # Create a Matplotlib figure
                            fig, ax = plt.subplots(figsize=(6, 3))
                            
                            # Create the bar chart with custom colors
                            ax.bar(age_brackets, populations, color='#FD4D86')
                            
                            # Customize the plot
                            ax.set_title("Population by Age Bracket", fontsize=14)
                            ax.set_xlabel("Age Bracket", fontsize=12)
                            ax.set_ylabel("Population", fontsize=12)
                            ax.set_xticks(range(len(age_brackets)))
                            ax.set_xticklabels(age_brackets, rotation=45, ha="right", fontsize=10)
                            
                            # Return the figure for rendering in Shiny
                            return fig
                        
                    with ui.nav_panel("Density"):
                        "Density" 
                        @render.text
                        def sensityScoer():
                            score = scores()
                            return float(score["density_score"] * 1000000)
                    
                    
                        @render.plot(alt="A bar chart of density scores for all areas within the radius.")
                        def density_plot():
                            print("Generating density score bar chart")
                            
                            # Get selected stop coordinates
                            x, y = stop.get()
                            station_coord = (y, x)
                            
                            # Fetch small area contributions from the Data_provider instance
                            small_area_contributions = initBackend.get_station_score(
                                station_coord, 
                                radius=input.rad(),
                                w_density=input.w_density(), 
                                w_income=input.w_income(), 
                                w_age=input.w_age()
                            )['small_area_contributions']
                            
                            # Extract density scores for each small area
                            area_ids = [area_id for area_id in small_area_contributions.keys()]
                            density_scores = [area_data['density_score'] for area_data in small_area_contributions.values()]
                            
                            # Create a Matplotlib figure
                            fig, ax = plt.subplots(figsize=(6, 3))
                            
                            # Create the bar chart
                            ax.bar(area_ids, density_scores, color='#704CB0')
                            
                            # Customize the plot
                            ax.set_title("Density Scores of Small Areas", fontsize=14)
                            ax.set_xlabel("Small Area ID", fontsize=12)
                            ax.set_ylabel("Density Score", fontsize=12)
                            ax.set_xticks(range(len(area_ids)))
                            ax.set_xticklabels(area_ids, rotation=45, ha="right", fontsize=10)
                            
                            # Return the figure for rendering in Shiny
                            return fig
                        
                    

                        

        
ui.include_css(app_dir / "styles.css")

# --------------------------------------------------------
# Reactive calculations and effects
# --------------------------------------------------------

@reactive.effect
def _():
    
    year = input.year()
    stops, small_areas = generateStops(year)
    rad = input.rad()
    markers = []
    circles = []
    
    for layer in map.widget.layers[:]:
        if layer.name in ["stops", "radius", "polygons", "heatmap"]:
            map.widget.remove_layer(layer)

    # Add polygons from small_areas
    polygons_layer = []
    for _, area in small_areas.iterrows():
        geojson_data = area["geometry"].__geo_interface__
        geojson_dict = {
            "type": "Feature",
            "properties": {},
            "geometry": geojson_data
        }

        geojson = GeoJSON(
            data=geojson_dict,  # Pass the dictionary here
            style={
                "color": "#005485",       # Border color
                "fillColor": "white",  # Fill color
                "opacity": 0.5,        # Border opacity
                "weight": 1.0,         # Border thickness
                "dashArray": "5, 5",   # Optional dashed border
                "fillOpacity": 0.3     # Fill opacity
            },
            hover_style={"color": "#005485", "weight": 1},  # Highlight on hover
            name="polygons"
        )
        polygons_layer.append(geojson)

    i = 0
    for stop, color in stops:
        if type(color) == list:
            smallerRad = 0
            for c in color:
                circle = Circle()
                circle.location = stop
                circle.radius = rad - smallerRad
                circle.color = c
                circle.fill_opacity = 0.1
                circle.name = str(i)
                circles.append(circle)
                smallerRad =+ 50
        else:
            circle = Circle()
            circle.location = stop
            circle.radius = rad
            circle.color = color
            circle.fill_color = color
            circle.fill_opacity = 0.1
            circle.name = str(i)
            circles.append(circle)
        
        

        icon = AwesomeIcon(name="bus", marker_color="black", icon_color="white")
        # icon1 = DivIcon(html = '<div style="border-radius:50%;background-color: black; width: 10px; height: 10px;"></div>')
        # icon2 = Icon(icon_url="marker.png")
        marker = Marker(location=stop,
                        icon=icon,
                        icon_anchor=(10,10),
                        icon_size=(0,0),
                        draggable=True)
        marker.name = str(i)
        marker.on_click(functools.partial(create_marker_callback, id=stop))
        marker.on_move(functools.partial(reset_marker, index=i))
        
        markers.append(marker)
        i += 1
    
    layerGroup = LayerGroup(layers=markers, name="stops")
    layerGroup2 = LayerGroup(layers=circles, name="radius")
    map.widget.add(layerGroup)
    map.widget.add(layerGroup2)

    # Add polygon layers to the map
    polygon_group = LayerGroup(layers=polygons_layer, name="polygons")
    map.widget.add(polygon_group)
    
    
stop = reactive.value()

def create_marker_callback(id, **kwargs):
    # We can also get coordinates of the marker here
    rad = input.rad()
    zoom = 15.0
    if rad > 500:
        zoom = 14.8
    map.widget.zoom = zoom
    map.widget.center = kwargs["coordinates"]
    stop.set(id)

def reset_marker(index, **kwargs):
    cord = kwargs["location"]
    x = cord[0]
    y = cord[1]
    for layer in map.widget.layers:
        if layer.name == "radius":  # Check for the correct LayerGroup
            for circle in layer.layers:
                if circle.name == str(index):  # Match the Circle by name
                    circle.location = [x, y]  # Update the Circle's location
    stop.set((x,y))
            

@reactive.effect
def centerMap():
    mapCenter = input.reset()
    map.widget.zoom = 11.8
    map.widget.center = (64.11,-21.90)

@reactive.calc
def scores():
    x, y = stop.get()
    score = initBackend.get_station_score(station_coord=(y, x), w_density=input.w_density(), w_income=input.w_income(), w_age=input. w_age(), radius=input.rad())
    return score

@reactive.calc
def lineScore():
    listOfStops, _ = generateStops(input.year())
    listOflines = {}

    # Handle stops with single and multiple colors
    for stop, color in listOfStops:
        x, y = stop
        # If the color is a list (multiple colors), iterate through it
        if isinstance(color, list):
            for single_color in color:
                if single_color not in listOflines:
                    listOflines[single_color] = []
                listOflines[single_color].append((y, x))
        else:
            # If it's a single color, process it normally
            if color not in listOflines:
                listOflines[color] = []
            listOflines[color].append((y, x))

    # Calculate scores for each line
    lines = {}
    for key, val in listOflines.items():
        score = initBackend.line_score(
            val,
            w_density=input.w_density(),
            w_income=input.w_income(),
            w_age=input.w_age(),
            radius=input.rad()
        )
        lines[key] = score["final_score"]

    return lines