Spaces:
Runtime error
Runtime error
File size: 5,238 Bytes
24c15f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import librosa
import numpy as np
import torch
from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan
checkpoint = "Matthijs/speecht5_vc"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForSpeechToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("Matthijs/speecht5_hifigan")
speaker_embeddings = {
"BDL": "spkemb/cmu_us_bdl_arctic-wav-arctic_a0009.npy",
"CLB": "spkemb/cmu_us_clb_arctic-wav-arctic_a0144.npy",
"RMS": "spkemb/cmu_us_rms_arctic-wav-arctic_b0353.npy",
"SLT": "spkemb/cmu_us_slt_arctic-wav-arctic_a0508.npy",
}
def process_audio(sampling_rate, waveform):
# convert from int16 to floating point
waveform = waveform / 32678.0
# convert to mono if stereo
if len(waveform.shape) > 1:
waveform = librosa.to_mono(waveform.T)
# resample to 16 kHz if necessary
if sampling_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sampling_rate, target_sr=16000)
# make PyTorch tensor
waveform = torch.tensor(waveform)
return waveform
def predict(audio, mic_audio, speaker):
# audio = tuple (sample_rate, frames) or (sample_rate, (frames, channels))
if mic_audio is not None:
sampling_rate, waveform = mic_audio
elif audio is not None:
sampling_rate, waveform = audio
else:
return (16000, np.zeros(0).astype(np.int16))
waveform = process_audio(sampling_rate, waveform)
inputs = processor(audio=waveform, sampling_rate=16000, return_tensors="pt")
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
speech = model.generate_speech(inputs["input_values"], speaker_embedding, vocoder=vocoder)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
title = "SpeechT5: Voice Conversion"
description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
SpeechT5 can be fine-tuned for different speech tasks. This space demonstrates the <b>speech-to-speech</b> checkpoint for (American) English
language voice conversion.
See also the <a href="https://huggingface.co/spaces/Matthijs/speecht5-asr-demo">speech recognition (ASR) demo</a>
and the <a href="https://huggingface.co/spaces/Matthijs/speecht5-tts-demo">text-to-speech (TTS) demo</a>.
<b>How to use:</b> Upload an audio file or record using the microphone. The audio is converted to mono and resampled to 16 kHz before
being passed into the model. The output is a mel spectrogram, which is converted to a mono 16 kHz waveform by the HiFi-GAN vocoder.
Because the model always applies random dropout, each attempt will give slightly different results.
"""
article = """
<div style='margin:20px auto;'>
<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-vc">original weights</a></p>
<pre>
@article{Ao2021SpeechT5,
title = {SpeechT5: Unified-Modal Encoder-Decoder Pre-training for Spoken Language Processing},
author = {Junyi Ao and Rui Wang and Long Zhou and Chengyi Wang and Shuo Ren and Yu Wu and Shujie Liu and Tom Ko and Qing Li and Yu Zhang and Zhihua Wei and Yao Qian and Jinyu Li and Furu Wei},
eprint={2110.07205},
archivePrefix={arXiv},
primaryClass={eess.AS},
year={2021}
}
</pre>
<p>Example sound credits:<p>
<ul>
<li>"Hmm, I don't know" from <a href="https://freesound.org/people/InspectorJ/sounds/519189/">InspectorJ</a> (CC BY 4.0 license)
<li>"Henry V" excerpt from <a href="https://freesound.org/people/acclivity/sounds/24096/">acclivity</a> (CC BY-NC 4.0 license)
<li>"You can see it in the eyes" from <a href="https://freesound.org/people/JoyOhJoy/sounds/165348/">JoyOhJoy</a> (CC0 license)
<li>"We yearn for time" from <a href="https://freesound.org/people/Sample_Me/sounds/610529/">Sample_Me</a> (CC0 license)
</ul>
<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>
</div>
"""
examples = [
["examples/yearn_for_time.mp3", None, "BDL (male)"],
["examples/henry5.mp3", None, "CLB (female)"],
["examples/see_in_eyes.wav", None, "RMS (male)"],
["examples/hmm_i_dont_know.wav", None, "SLT (female)"],
]
gr.Interface(
fn=predict,
inputs=[
gr.Audio(label="Upload Speech", source="upload", type="numpy"),
gr.Audio(label="Record Speech", source="microphone", type="numpy"),
gr.Radio(label="Speaker", choices=["BDL (male)", "CLB (female)", "RMS (male)", "SLT (female)"], value="BDL (male)"),
],
outputs=[
gr.Audio(label="Converted Speech", type="numpy"),
],
title=title,
description=description,
article=article,
examples=examples,
).launch()
|