File size: 5,678 Bytes
036204f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
from torch import nn
from torch.nn import functional as F

batch_size = 32
block_size = 128
max_iters = 1000
learning_rate = 3e-4
eval_steps = 200
n_embd = 384
n_head = 4
n_layer = 4
dropout = 0.2


class Block(nn.Module):
    """Transformer block: communication followed by computation"""

    def __init__(self, n_embd, n_head):
        # n_embd: embedding dimension, n_head: the number of heads we'd like
        super().__init__()
        head_size = n_embd // n_head
        self.sa = MultiHeadAttention(n_head, head_size)
        self.ffwd = FeedFoward(n_embd)
        self.ln1 = nn.LayerNorm(n_embd)
        self.ln2 = nn.LayerNorm(n_embd)

    def forward(self, x):
        y = self.sa(x)
        x = self.ln1(x + y)
        y = self.ffwd(x)
        x = self.ln2(x + y)
        return x


class MultiHeadAttention(nn.Module):
    """multiple heads of self-attention in parallel"""

    def __init__(self, num_heads, head_size):
        super().__init__()
        self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
        self.proj = nn.Linear(head_size * num_heads, n_embd)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # (B, T, F) -> (B, T, [h1, h1, h1, h1, h2, h2, h2, h2, h3, h3, h3, h3])
        out = torch.cat([h(x) for h in self.heads], dim=-1)
        out = self.dropout(self.proj(out))
        return out


class Head(nn.Module):
    """one head of self-attention"""

    def __init__(self, head_size):
        super().__init__()
        self.key = nn.Linear(n_embd, head_size, bias=False)
        self.query = nn.Linear(n_embd, head_size, bias=False)
        self.value = nn.Linear(n_embd, head_size, bias=False)
        self.register_buffer(
            "tril", torch.tril(torch.ones(block_size, block_size))
        )  # noqa 5501

        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # input of size (batch, time-step, channels)
        # output of size (batch, time-step, head size)
        B, T, C = x.shape
        k = self.key(x)  # (B,T,hs)
        q = self.query(x)  # (B,T,hs)
        # compute attention scores ("affinities")
        wei = (
            q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5
        )  # (B, T, hs) @ (B, hs, T) -> (B, T, T) # noqa 5501
        wei = wei.masked_fill(
            self.tril[:T, :T] == 0, float("-inf")
        )  # (B, T, T) # noqa 5501
        wei = F.softmax(wei, dim=-1)  # (B, T, T)
        wei = self.dropout(wei)
        # perform the weighted aggregation of the values
        v = self.value(x)  # (B,T,hs)
        out = wei @ v  # (B, T, T) @ (B, T, hs) -> (B, T, hs)
        return out


class FeedFoward(nn.Module):
    """Simple linear layer followed by non_linear layer"""

    def __init__(self, n_embd):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),
            nn.ReLU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.net(x)


class GPTLanguageModel(nn.Module):
    def __init__(self, vocab_size, device):
        super().__init__()
        self.device = device
        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
        self.position_embedding_table = nn.Embedding(block_size, n_embd)
        self.blocks = nn.Sequential(
            *[Block(n_embd, n_head=n_head) for _ in range(n_layer)]
        )  # noqa 5501
        self.ln_f = nn.LayerNorm(n_embd)
        self.lm_head = nn.Linear(n_embd, vocab_size)

        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, index, targets=None):
        B, T = index.shape

        # idx and targets are both (B,T) tensor of integers
        tok_emb = self.token_embedding_table(index)  # (B,T,C)
        pos_emb = self.position_embedding_table(
            torch.arange(T, device=self.device)
        )  # (T,C) # noqa 5501
        x = tok_emb + pos_emb  # (B,T,C)
        x = self.blocks(x)  # (B,T,C)
        x = self.ln_f(x)  # (B,T,C)
        logits = self.lm_head(x)  # (B,T,vocab_size)

        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B * T, C)
            targets = targets.view(B * T)
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, index, max_new_tokens):
        # index is (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
            # crop idx to the last block_size tokens
            index_cond = index[:, -block_size:]
            # get the predictions
            logits, loss = self.forward(index_cond)
            # focus only on the last time step
            logits = logits[:, -1, :]  # becomes (B, C)
            # apply softmax to get probabilities
            probs = F.softmax(logits, dim=-1)  # (B, C)
            # sample from the distribution
            index_next = torch.multinomial(probs, num_samples=1)  # (B, 1)
            # append sampled index to the running sequence
            index = torch.cat((index, index_next), dim=1)  # (B, T+1)
        return index


def create_GPT_model(vocab_size, device):
    model = GPTLanguageModel(vocab_size=vocab_size, device=device)
    model = model.to(device)
    return model