File size: 21,143 Bytes
9292fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import math

import pandas as pd
import numpy as np
from itertools import product
import shapely
from bokeh.models import Span, Label, ColumnDataSource, Whisker
from bokeh.plotting import figure, show
from shapely.geometry import Polygon
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn

task_patterns = {
    "CB": [0, 3],
    "RTE": [0, 3],
    "BoolQ": [0, 3, 5],
    "MNLI": [0, 3],
    "COPA": [0, 1],
    "WSC": [0, 1, 2],
    "WiC": [0, 1],
    "MultiRC": [0, 1, 2],
}
task_reps = {"CB": 4, "RTE": 4, "BoolQ": 4, "MNLI": 4, "COPA": 4, "WSC": 4, "WiC": 4, "MultiRC": 4}
task_best_pattern = {"CB": 0, "RTE": 0, "BoolQ": 0, "MNLI": 0, "COPA": 1, "WSC": 0, "WiC": 0, "MultiRC": 1}
task_metric_short = {
    "CB": "f1-macro",
    "RTE": "acc",
    "BoolQ": "acc",
    "MNLI": "acc",
    "COPA": "acc",
    "WSC": "acc",
    "WiC": "acc",
    "MultiRC": "f1",
}
task_metrics = {
    "CB": "F1-macro",
    "RTE": "accuracy",
    "BoolQ": "accuracy",
    "MNLI": "accuracy",
    "COPA": "accuracy",
    "WSC": "accuracy",
    "WiC": "accuracy",
    "MultiRC": "F1",
}
task_neutral = {
    "CB": True,
    "RTE": True,
    "BoolQ": True,
    "MNLI": True,
    "COPA": False,
    "WSC": False,
    "multirc": True,
    "WiC": True,
    "MultiRC": True,
}
neutral_tasks = [
    "BoolQ",
    "CB",
    "MNLI",
    "MultiRC",
    "RTE",
    "WiC",
]
tasks = sorted(task_patterns.keys())

pvp_colors = ["goldenrod", "blanchedalmond", "floralwhite"]
ctl_colors = ["crimson", "salmon", "mistyrose"]
clf_colors = ["indigo", "plum", "thistle"]


def prompt_boolq(passage, question, pattern):
    if pattern == 0:
        return f"""<span style="color: #0c593d">{passage}</span> <span style="color: #910713"><b>Based on the previous passage,</b></span> <span style="color: #031154">{question}</span> <span style="color: #ba9004"><b>[YES/NO]</b></span>"""
    if pattern == 1:
        return f"""<span style="color: #0c593d">{passage}</span><span style="color: #910713"><b> Question:</b></span> <span style="color: #031154">{question}</span><span style="color: #910713"><b> Answer: </b></span><span style="color: #ba9004"><b>[YES/NO]</b></span>"""
    if pattern == 2:
        return f"""<span style="color: #910713"><b>Based on the following passage,</b></span> <span style="color: #031154">{question}</span><span style="color: #ba9004"><b> [YES/NO]</b></span> <span style="color: #0c593d">{passage}</span>"""


def advantage_text(advantage):
    model_type = (
        """<span style="color: #4B0082">Head</span>"""
        if advantage < 0
        else """<span style="color: #daa520">Prompting</span>"""
    )
    return f"""<b>{model_type}</b> advantage: <b>{abs(advantage):.2f}</b> data points"""


def average_advantage_text(advantage):
    model_type = (
        """<span style="color: #4B0082">head</span>"""
        if advantage < 0
        else """<span style="color: #daa520">prompting</span>"""
    )
    return f"""<b>Average {model_type}</b> advantage: <b>{abs(advantage):.2f}</b> data points"""


def naming_convention(task, seed, pvp_index=None, neutral=False):
    method = f"PVP {pvp_index}" if pvp_index is not None else "CLF"
    model = "roberta"
    if neutral:
        verbalizer = "neutral"
    else:
        verbalizer = None
    return (
            f"{method} {model}"
            + (f" {verbalizer} verbalizer" if verbalizer is not None else "")
            + f" seed {seed} - test-{task_metric_short[task]}-all-p"
    )


def get_data(task):
    url = f"https://raw.githubusercontent.com/TevenLeScao/pet/master/exported_results/{task.lower()}/wandb_export.csv"
    df = pd.read_csv(url)
    training_points = df["training_points"]

    head_performances = np.transpose(np.array([df[naming_convention(task, i)] for i in range(task_reps[task])]))
    pattern_performances = {}
    for pattern in task_patterns[task]:
        pattern_performances[pattern] = {
            "normal": np.transpose(np.array([df[naming_convention(task, i, pattern)] for i in range(task_reps[task])]))
        }
        if task_neutral[task]:
            pattern_performances[pattern]["neutral"] = np.transpose(
                np.array([df[naming_convention(task, i, pattern, True)] for i in range(task_reps[task])])
            )

    return training_points, head_performances, pattern_performances


def reduct(performances, reduction="accmax", final_pattern=0, verbalizer="normal", exclude=None):
    # Combining the different runs for each experimental set-up
    reducted = None

    if isinstance(performances, dict):
        performances = performances[final_pattern][verbalizer]
    if exclude is not None:
        performances = np.delete(performances, exclude, axis=1)

    if reduction == "avg":
        # Average
        reducted = np.nanmean(performances, axis=1)

    if reduction == "std":
        # Standard deviation
        reducted = np.nanstd(performances, axis=1)

    if reduction == "max":
        # Maximum
        reducted = np.nanmax(performances, axis=1)

    if reduction == "accmax":
        # This makes the maximum curve monotonic
        max_performance = np.nanmax(performances, axis=1)
        reducted = np.maximum.accumulate(max_performance)

    assert reducted is not None, "unrecognized reduction method"
    return reducted


def find_surrounding_points(perf, clf_results, pvp_results):
    for i, clf_result in enumerate(clf_results):
        if i - 1 > 0 and clf_result == clf_results[i - 1]:
            continue
        if clf_result > perf:
            if i == 0:
                raise ValueError(f"value {perf} too small")
            else:
                break
    for j, pvp_result in enumerate(pvp_results):
        if j - 1 > 0 and pvp_result == pvp_results[j - 1]:
            continue
        if pvp_result > perf:
            if j == 0:
                raise ValueError(f"value {perf} too small")
            else:
                break
    return i - 1, j - 1


def interpolate(perf, x1, x2, y1, y2):
    return x1 + (perf - y1) * (x2 - x1) / (y2 - y1)


def interpolate_from_idx(perf, idx, results, training_points):
    return interpolate(perf, training_points[idx], training_points[idx + 1], results[idx], results[idx + 1])


def interpolate_from_perf(perf, overlapping_range, training_points, clf_results, pvp_results):
    if not overlapping_range[0] <= perf <= overlapping_range[1]:
        raise ValueError(f"perf {perf} not in acceptable bounds {overlapping_range}")
    clf_idx, pvp_idx = find_surrounding_points(perf, clf_results, pvp_results)
    return interpolate_from_idx(perf, clf_idx, clf_results, training_points), interpolate_from_idx(
        perf, pvp_idx, pvp_results, training_points
    )


def data_difference(perf, overlapping_range, training_points, clf_results, pvp_results):
    x1, x2 = interpolate_from_perf(perf, overlapping_range, training_points, clf_results, pvp_results)
    return x1 - x2


def calculate_overlap(clf_results, pvp_results, full_range=False):
    if full_range:
        return (min(min(clf_results), min(pvp_results)), max(max(clf_results), max(pvp_results)))
    else:
        return (max(min(clf_results), min(pvp_results)), min(max(clf_results), max(pvp_results)))


def calculate_range(overlapping_range, number_of_points):
    integral_range = (
        overlapping_range[0] + i / (number_of_points + 1) * (overlapping_range[1] - overlapping_range[0])
        for i in range(1, number_of_points + 1)
    )
    return integral_range


def calculate_differences(integral_range, overlapping_range, training_points, clf_results, pvp_results):
    differences = [
        data_difference(y, overlapping_range, training_points, clf_results, pvp_results) for y in integral_range
    ]
    return differences


def calculate_offset(training_points, clf_results, pvp_results, number_of_points=1000):
    overlapping_range = calculate_overlap(clf_results, pvp_results)
    integral_range = calculate_range(overlapping_range, number_of_points)
    differences = calculate_differences(integral_range, overlapping_range, training_points, clf_results, pvp_results)
    offset = sum(differences) / number_of_points
    return offset


def intersection_with_range(training_points, results, band):
    result_polygon = Polygon(
        [(training_points[i], results[i]) for i in range(len(training_points))]
        + [(training_points[-1], 0), (training_points[0], 0)]
    )
    return result_polygon.intersection(band)


def fill_polygon(fig, polygon, color, label=None, alpha=1.0):
    if polygon.is_empty or isinstance(polygon, shapely.geometry.LineString):
        return
    if isinstance(polygon, Polygon):
        xs, ys = polygon.exterior.xy
        fig.patch(xs, ys, color=color, alpha=alpha)
    else:
        for geom in polygon.geoms:
            if isinstance(geom, shapely.geometry.LineString):
                continue
            xs, ys = geom.exterior.xy
            fig.patch(xs, ys, color=color, alpha=alpha)
            label = None


label_order = {
    "head run": 0,
    "head advantage": 1,
    "control run": 2,
    "optimization advantage": 3,
    "prompting run": 4,
    "semantics advantage": 5,
    "region of comparison": 6,
}


def metric_tap(
        event, overlapping_range, training_points, clf_results, pvp_results, advantage_box, advantage_plot
):
    _, metric_value = event.x, event.y
    try:
        advantage_value = data_difference(metric_value, overlapping_range, training_points, clf_results, pvp_results)
        advantage_box.text = advantage_text(advantage_value)
        if not isinstance(advantage_plot.renderers[-1], Span):
            metric_line = Span(
                location=metric_value,
                line_alpha=0.7,
                dimension="width",
                line_color=clf_colors[0] if advantage_value < 0 else pvp_colors[0],
                line_dash="dashed",
                line_width=1,
            )
            advantage_plot.renderers.extend([metric_line])
        else:
            advantage_plot.renderers[-1].location = metric_value
            advantage_plot.renderers[-1].line_color = clf_colors[0] if advantage_value < 0 else pvp_colors[0]
    # clicking outside the region
    except ValueError:
        pass


def plot_polygons_bokeh(task, training_points, clf_results, pvp_results, clf_colors, pvp_colors, x_log_scale=False):
    overlapping_range = calculate_overlap(clf_results, pvp_results, False)
    full_range = calculate_overlap(clf_results, pvp_results, True)
    middle_y = (full_range[0] + full_range[1]) / 2

    fig = figure(plot_height=400, plot_width=800, max_height=400, max_width=800,
                 x_axis_type="log" if x_log_scale else "linear", title="Performance over training subset sizes of head and prompting methods")

    fig.circle(training_points, clf_results, color=clf_colors[0], legend="head run")
    fig.circle(training_points, pvp_results, color=pvp_colors[0], legend="prompting run")
    fig.line(training_points, clf_results, color=clf_colors[0], alpha=1)
    fig.line(training_points, pvp_results, color=pvp_colors[0], alpha=1)
    fig.xaxis.axis_label = "training subset size"
    fig.yaxis.axis_label = task_metrics[task]
    fig.patch(
        [training_points[0], training_points[0], training_points[-1], training_points[-1]],
        [overlapping_range[0], overlapping_range[1], overlapping_range[1], overlapping_range[0]],
        color="black",
        fill_alpha=0,
        line_width=0,
        legend="comparison region",
        hatch_alpha=0.14,
        hatch_scale=40,
        hatch_pattern="/",
    )

    band = Polygon(
        [
            (training_points[0], overlapping_range[0]),
            (training_points[0], overlapping_range[1]),
            (training_points[-1], overlapping_range[1]),
            (training_points[-1], overlapping_range[0]),
        ]
    )
    full_band = Polygon(
        [
            (training_points[0], full_range[0]),
            (training_points[0], full_range[1]),
            (training_points[-1], full_range[1]),
            (training_points[-1], full_range[0]),
        ]
    )
    clf_polygon = intersection_with_range(training_points, clf_results, band)
    pvp_polygon = intersection_with_range(training_points, pvp_results, band)
    full_clf_polygon = intersection_with_range(training_points, clf_results, full_band)
    full_pvp_polygon = intersection_with_range(training_points, pvp_results, full_band)

    clf_inside_area = clf_polygon.difference(pvp_polygon)
    pvp_inside_area = pvp_polygon.difference(clf_polygon)
    clf_outside_area = (full_clf_polygon.difference(full_pvp_polygon)).difference(clf_inside_area)
    pvp_outside_area = (full_pvp_polygon.difference(full_clf_polygon)).difference(pvp_inside_area)

    fill_polygon(fig, clf_outside_area, clf_colors[1], alpha=0.13)
    fill_polygon(fig, pvp_outside_area, pvp_colors[1], alpha=0.18)
    fill_polygon(
        fig, clf_inside_area, clf_colors[1], alpha=0.4, label="head advantage" if task == "WiC" else None
    )
    fill_polygon(fig, pvp_inside_area, pvp_colors[1], alpha=0.4, label="prompting advantage")

    fig.line([training_points[0], training_points[-1]], [overlapping_range[0], overlapping_range[0]], color="dimgrey")
    fig.line([training_points[0], training_points[-1]], [overlapping_range[1], overlapping_range[1]], color="dimgrey")

    vline = Span(
        location=training_points[-1], dimension="height", line_color="black", line_width=2.5, line_dash="dashed"
    )
    end_label = Label(
        x=training_points[-1], y=middle_y, text="End of dataset", angle=90, angle_units="deg", text_align="center"
    )
    fig.renderers.extend([vline, end_label])

    fig.legend.location = "bottom_right"

    return fig


def plot_three_polygons_bokeh(
        task, training_points, clf_results, pvp_results, ctl_results, clf_colors, pvp_colors, ctl_colors,
        x_log_scale=False
):
    overlapping_range = calculate_overlap(clf_results, pvp_results, False)
    full_range = calculate_overlap(clf_results, pvp_results, True)
    middle_y = (full_range[0] + full_range[1]) / 2

    fig = figure(plot_height=400, plot_width=800, max_height=400, max_width=800,
                 x_axis_type="log" if x_log_scale else "linear", title="Performance over training subset sizes of head, prompting and prompting with a null verbalizer")
    fig.xaxis.axis_label = "training subset size"
    fig.yaxis.axis_label = task_metrics[task]
    fig.circle(training_points, clf_results, color=clf_colors[0], legend="head run")
    fig.circle(training_points, pvp_results, color=pvp_colors[0], legend="prompting run")
    fig.circle(training_points, ctl_results, color=ctl_colors[0], legend="null verbalizer run")
    fig.line(training_points, clf_results, color=clf_colors[0], alpha=1)
    fig.line(training_points, pvp_results, color=pvp_colors[0], alpha=1)
    fig.line(training_points, ctl_results, color=ctl_colors[0], alpha=1)

    fig.patch(
        [training_points[0], training_points[0], training_points[-1], training_points[-1]],
        [overlapping_range[0], overlapping_range[1], overlapping_range[1], overlapping_range[0]],
        color="black",
        fill_alpha=0,
        line_width=0,
        legend="comparison region",
        hatch_alpha=0.14,
        hatch_scale=40,
        hatch_pattern="/",
    )

    band = Polygon(
        [
            (training_points[0], overlapping_range[0]),
            (training_points[0], overlapping_range[1]),
            (training_points[-1], overlapping_range[1]),
            (training_points[-1], overlapping_range[0]),
        ]
    )
    full_band = Polygon(
        [
            (training_points[0], full_range[0]),
            (training_points[0], full_range[1]),
            (training_points[-1], full_range[1]),
            (training_points[-1], full_range[0]),
        ]
    )

    clf_polygon = intersection_with_range(training_points, clf_results, band)
    pvp_polygon = intersection_with_range(training_points, pvp_results, band)
    ctl_polygon = intersection_with_range(training_points, ctl_results, band)

    full_clf_polygon = intersection_with_range(training_points, clf_results, full_band)
    full_pvp_polygon = intersection_with_range(training_points, pvp_results, full_band)
    full_ctl_polygon = intersection_with_range(training_points, ctl_results, full_band)

    clf_inside_area = clf_polygon.difference(ctl_polygon)
    pvp_inside_area = pvp_polygon.difference(clf_polygon).difference(ctl_polygon)
    ctl_inside_area = ctl_polygon.difference(clf_polygon)

    clf_outside_area = (full_clf_polygon.difference(full_ctl_polygon)).difference(clf_inside_area)
    pvp_outside_area = (full_pvp_polygon.difference(full_clf_polygon).difference(ctl_polygon)).difference(
        pvp_inside_area
    )
    ctl_outside_area = (full_ctl_polygon.difference(full_clf_polygon)).difference(pvp_inside_area)

    fill_polygon(
        fig, clf_inside_area, clf_colors[1], alpha=0.4, label="head advantage" if task == "WiC" else None
    )
    fill_polygon(fig, pvp_inside_area, pvp_colors[1], alpha=0.4, label="prompting advantage")
    fill_polygon(fig, ctl_inside_area, ctl_colors[1], alpha=0.4, label="null verbalizer advantage")
    fill_polygon(fig, clf_outside_area, clf_colors[1], alpha=0.13)
    fill_polygon(fig, pvp_outside_area, pvp_colors[1], alpha=0.18)
    fill_polygon(fig, ctl_outside_area, ctl_colors[1], alpha=0.13)

    fig.line([training_points[0], training_points[-1]], [overlapping_range[0], overlapping_range[0]], color="dimgrey")
    fig.line([training_points[0], training_points[-1]], [overlapping_range[1], overlapping_range[1]], color="dimgrey")

    vline = Span(
        location=training_points[-1], dimension="height", line_color="black", line_width=2.5, line_dash="dashed"
    )
    end_label = Label(
        x=training_points[-1], y=middle_y, text="End of dataset", angle=90, angle_units="deg", text_align="center"
    )
    fig.renderers.extend([vline, end_label])

    fig.legend.location = "bottom_right"

    return fig


def pattern_graph(task):
    fig = figure(plot_height=400, plot_width=800, max_height=400, max_width=800, x_axis_type="log", title="Performance over training subset sizes of different prompt patterns")
    fig.xaxis.axis_label = "training subset size"
    fig.yaxis.axis_label = task_metrics[task]
    url = f"https://raw.githubusercontent.com/TevenLeScao/pet/master/exported_results/{task.lower()}/wandb_export.csv"
    df = pd.read_csv(url)
    expanded_training_points = np.array(list(df["training_points"]) * task_reps[task] * len(task_patterns[task]))
    data = np.array(df[[naming_convention(task, seed, pattern) for pattern in task_patterns[task] for seed in
                        range(task_reps[task])]])
    data = data.reshape(-1, task_reps[task])
    col_med = np.nanmean(data, axis=1)
    # Find indices that you need to replace
    inds = np.where(np.isnan(data))
    # Place column means in the indices. Align the arrays using take
    data[inds] = np.take(col_med, inds[0])
    data = data.reshape(len(df["training_points"]), -1)
    data = data.transpose().reshape(-1)
    data = data + np.random.normal(0, 0.01, len(data))
    pattern = np.array([i // (len(data) // len(task_patterns[task])) for i in range(len(data))])
    seed = np.array([0, 1, 2, 3] * (len(data) // task_reps[task]))
    long_df = pd.DataFrame(np.stack((expanded_training_points, pattern, seed, data), axis=1),
                           columns=["training_points", "pattern", "seed", task_metrics[task]])
    long_df['pattern'] = long_df['pattern'].astype(int).astype(str)
    gby_pattern = long_df.groupby('pattern')
    pattern_colors = ["royalblue", "darkturquoise", "darkviolet"]

    for i, (pattern, pattern_df) in enumerate(gby_pattern):
        gby_training_points = pattern_df.groupby('training_points')
        x = [training_point for training_point, training_point_df in gby_training_points]
        y_max = list([np.max(training_point_df[task_metrics[task]]) for training_point, training_point_df in gby_training_points])
        y_min = list([np.min(training_point_df[task_metrics[task]]) for training_point, training_point_df in gby_training_points])
        y = list([np.median(training_point_df[task_metrics[task]]) for training_point, training_point_df in gby_training_points])
        fig.circle(x, y, color=pattern_colors[i], alpha=1, legend=f"Pattern {i}")
        fig.line(x, y, color=pattern_colors[i], alpha=1)
        fig.varea(x=x, y1=y_max, y2=y_min, color=pattern_colors[i], alpha=0.11)
        # source = ColumnDataSource(data=dict(base=x, lower=y_min, upper=y_max))
        # w = Whisker(source=source, base="base", upper="upper", lower="lower", line_color=pattern_colors[i], line_alpha=0.3)
        # w.upper_head.line_color = pattern_colors[i]
        # w.lower_head.line_color = pattern_colors[i]
        # fig.add_layout(w)

    return fig



def cubic_easing(t):
    if t < 0.5:
        return 4 * t * t * t
    p = 2 * t - 2
    return 0.5 * p * p * p + 1


def circ_easing(t):
    if t < 0.5:
        return 0.5 * (1 - math.sqrt(1 - 4 * (t * t)))
    return 0.5 * (math.sqrt(-((2 * t) - 3) * ((2 * t) - 1)) + 1)