File size: 8,612 Bytes
814d9b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import (
    AutoencoderKL,
    UNet2DConditionModel,
    DDIMScheduler,
    StableDiffusionPipeline,
)
import torchvision.transforms.functional as TF

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

import sys
sys.path.append('./')

from zero123 import Zero123Pipeline


class Zero123(nn.Module):
    def __init__(self, device, fp16=True, t_range=[0.02, 0.98]):
        super().__init__()

        self.device = device
        self.fp16 = fp16
        self.dtype = torch.float16 if fp16 else torch.float32

        self.pipe = Zero123Pipeline.from_pretrained(            
            # "bennyguo/zero123-diffusers",
            "bennyguo/zero123-xl-diffusers",
            # './model_cache/zero123_xl',
            variant="fp16_ema" if self.fp16 else None,
            torch_dtype=self.dtype,
        ).to(self.device)

        # for param in self.pipe.parameters():
        #     param.requires_grad = False

        self.pipe.image_encoder.eval()
        self.pipe.vae.eval()
        self.pipe.unet.eval()
        self.pipe.clip_camera_projection.eval()

        self.vae = self.pipe.vae
        self.unet = self.pipe.unet

        self.pipe.set_progress_bar_config(disable=True)

        self.scheduler = DDIMScheduler.from_config(self.pipe.scheduler.config)
        self.num_train_timesteps = self.scheduler.config.num_train_timesteps

        self.min_step = int(self.num_train_timesteps * t_range[0])
        self.max_step = int(self.num_train_timesteps * t_range[1])
        self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience

        self.embeddings = None

    @torch.no_grad()
    def get_img_embeds(self, x):
        # x: image tensor in [0, 1]
        x = F.interpolate(x, (256, 256), mode='bilinear', align_corners=False)
        x_pil = [TF.to_pil_image(image) for image in x]
        x_clip = self.pipe.feature_extractor(images=x_pil, return_tensors="pt").pixel_values.to(device=self.device, dtype=self.dtype)
        c = self.pipe.image_encoder(x_clip).image_embeds
        v = self.encode_imgs(x.to(self.dtype)) / self.vae.config.scaling_factor
        self.embeddings = [c, v]

    @torch.no_grad()
    def refine(self, pred_rgb, polar, azimuth, radius, 
               guidance_scale=5, steps=50, strength=0.8,
        ):

        batch_size = pred_rgb.shape[0]

        self.scheduler.set_timesteps(steps)

        if strength == 0:
            init_step = 0
            latents = torch.randn((1, 4, 32, 32), device=self.device, dtype=self.dtype)
        else:
            init_step = int(steps * strength)
            pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
            latents = self.encode_imgs(pred_rgb_256.to(self.dtype))
            latents = self.scheduler.add_noise(latents, torch.randn_like(latents), self.scheduler.timesteps[init_step])

        T = np.stack([np.deg2rad(polar), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), radius], axis=-1)
        T = torch.from_numpy(T).unsqueeze(1).to(self.dtype).to(self.device) # [8, 1, 4]
        cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
        cc_emb = self.pipe.clip_camera_projection(cc_emb)
        cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)

        vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
        vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)

        for i, t in enumerate(self.scheduler.timesteps[init_step:]):
            
            x_in = torch.cat([latents] * 2)
            t_in = torch.cat([t.view(1)] * 2).to(self.device)

            noise_pred = self.unet(
                torch.cat([x_in, vae_emb], dim=1),
                t_in.to(self.unet.dtype),
                encoder_hidden_states=cc_emb,
            ).sample

            noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
            
            latents = self.scheduler.step(noise_pred, t, latents).prev_sample

        imgs = self.decode_latents(latents) # [1, 3, 256, 256]
        return imgs
    
    def train_step(self, pred_rgb, polar, azimuth, radius, step_ratio=None, guidance_scale=5, as_latent=False):
        # pred_rgb: tensor [1, 3, H, W] in [0, 1]

        batch_size = pred_rgb.shape[0]

        if as_latent:
            latents = F.interpolate(pred_rgb, (32, 32), mode='bilinear', align_corners=False) * 2 - 1
        else:
            pred_rgb_256 = F.interpolate(pred_rgb, (256, 256), mode='bilinear', align_corners=False)
            latents = self.encode_imgs(pred_rgb_256.to(self.dtype))

        if step_ratio is not None:
            # dreamtime-like
            # t = self.max_step - (self.max_step - self.min_step) * np.sqrt(step_ratio)
            t = np.round((1 - step_ratio) * self.num_train_timesteps).clip(self.min_step, self.max_step)
            t = torch.full((batch_size,), t, dtype=torch.long, device=self.device)
        else:
            t = torch.randint(self.min_step, self.max_step + 1, (batch_size,), dtype=torch.long, device=self.device)

        w = (1 - self.alphas[t]).view(batch_size, 1, 1, 1)

        with torch.no_grad():
            noise = torch.randn_like(latents)
            latents_noisy = self.scheduler.add_noise(latents, noise, t)

            x_in = torch.cat([latents_noisy] * 2)
            t_in = torch.cat([t] * 2)

            T = np.stack([np.deg2rad(polar), np.sin(np.deg2rad(azimuth)), np.cos(np.deg2rad(azimuth)), radius], axis=-1)
            T = torch.from_numpy(T).unsqueeze(1).to(self.dtype).to(self.device) # [8, 1, 4]
            cc_emb = torch.cat([self.embeddings[0].repeat(batch_size, 1, 1), T], dim=-1)
            cc_emb = self.pipe.clip_camera_projection(cc_emb)
            cc_emb = torch.cat([cc_emb, torch.zeros_like(cc_emb)], dim=0)

            vae_emb = self.embeddings[1].repeat(batch_size, 1, 1, 1)
            vae_emb = torch.cat([vae_emb, torch.zeros_like(vae_emb)], dim=0)

            noise_pred = self.unet(
                torch.cat([x_in, vae_emb], dim=1),
                t_in.to(self.unet.dtype),
                encoder_hidden_states=cc_emb,
            ).sample

        noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)

        grad = w * (noise_pred - noise)
        grad = torch.nan_to_num(grad)

        target = (latents - grad).detach()
        loss = 0.5 * F.mse_loss(latents.float(), target, reduction='sum')

        return loss
    

    def decode_latents(self, latents):
        latents = 1 / self.vae.config.scaling_factor * latents

        imgs = self.vae.decode(latents).sample
        imgs = (imgs / 2 + 0.5).clamp(0, 1)

        return imgs

    def encode_imgs(self, imgs, mode=False):
        # imgs: [B, 3, H, W]

        imgs = 2 * imgs - 1

        posterior = self.vae.encode(imgs).latent_dist
        if mode:
            latents = posterior.mode()
        else:
            latents = posterior.sample() 
        latents = latents * self.vae.config.scaling_factor

        return latents
    
    
if __name__ == '__main__':
    import cv2
    import argparse
    import numpy as np
    import matplotlib.pyplot as plt
    
    parser = argparse.ArgumentParser()

    parser.add_argument('input', type=str)
    parser.add_argument('--polar', type=float, default=0, help='delta polar angle in [-90, 90]')
    parser.add_argument('--azimuth', type=float, default=0, help='delta azimuth angle in [-180, 180]')
    parser.add_argument('--radius', type=float, default=0, help='delta camera radius multiplier in [-0.5, 0.5]')

    opt = parser.parse_args()

    device = torch.device('cuda')

    print(f'[INFO] loading image from {opt.input} ...')
    image = cv2.imread(opt.input, cv2.IMREAD_UNCHANGED)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_AREA)
    image = image.astype(np.float32) / 255.0
    image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).contiguous().to(device)

    print(f'[INFO] loading model ...')
    zero123 = Zero123(device)

    print(f'[INFO] running model ...')
    zero123.get_img_embeds(image)

    while True:
        outputs = zero123.refine(image, polar=[opt.polar], azimuth=[opt.azimuth], radius=[opt.radius], strength=0)
        plt.imshow(outputs.float().cpu().numpy().transpose(0, 2, 3, 1)[0])
        plt.show()