File size: 6,352 Bytes
814d9b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
/*
 * Copyright (C) 2023, Inria
 * GRAPHDECO research group, https://team.inria.fr/graphdeco
 * All rights reserved.
 *
 * This software is free for non-commercial, research and evaluation use 
 * under the terms of the LICENSE.md file.
 *
 * For inquiries contact  george.drettakis@inria.fr
 */

#define BOX_SIZE 1024

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "simple_knn.h"
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#include <vector>
#include <cuda_runtime_api.h>
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#define __CUDACC__
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>

namespace cg = cooperative_groups;

struct CustomMin
{
	__device__ __forceinline__
		float3 operator()(const float3& a, const float3& b) const {
		return { min(a.x, b.x), min(a.y, b.y), min(a.z, b.z) };
	}
};

struct CustomMax
{
	__device__ __forceinline__
		float3 operator()(const float3& a, const float3& b) const {
		return { max(a.x, b.x), max(a.y, b.y), max(a.z, b.z) };
	}
};

__host__ __device__ uint32_t prepMorton(uint32_t x)
{
	x = (x | (x << 16)) & 0x030000FF;
	x = (x | (x << 8)) & 0x0300F00F;
	x = (x | (x << 4)) & 0x030C30C3;
	x = (x | (x << 2)) & 0x09249249;
	return x;
}

__host__ __device__ uint32_t coord2Morton(float3 coord, float3 minn, float3 maxx)
{
	uint32_t x = prepMorton(((coord.x - minn.x) / (maxx.x - minn.x)) * ((1 << 10) - 1));
	uint32_t y = prepMorton(((coord.y - minn.y) / (maxx.y - minn.y)) * ((1 << 10) - 1));
	uint32_t z = prepMorton(((coord.z - minn.z) / (maxx.z - minn.z)) * ((1 << 10) - 1));

	return x | (y << 1) | (z << 2);
}

__global__ void coord2Morton(int P, const float3* points, float3 minn, float3 maxx, uint32_t* codes)
{
	auto idx = cg::this_grid().thread_rank();
	if (idx >= P)
		return;

	codes[idx] = coord2Morton(points[idx], minn, maxx);
}

struct MinMax
{
	float3 minn;
	float3 maxx;
};

__global__ void boxMinMax(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes)
{
	auto idx = cg::this_grid().thread_rank();

	MinMax me;
	if (idx < P)
	{
		me.minn = points[indices[idx]];
		me.maxx = points[indices[idx]];
	}
	else
	{
		me.minn = { FLT_MAX, FLT_MAX, FLT_MAX };
		me.maxx = { -FLT_MAX,-FLT_MAX,-FLT_MAX };
	}

	__shared__ MinMax redResult[BOX_SIZE];

	for (int off = BOX_SIZE / 2; off >= 1; off /= 2)
	{
		if (threadIdx.x < 2 * off)
			redResult[threadIdx.x] = me;
		__syncthreads();

		if (threadIdx.x < off)
		{
			MinMax other = redResult[threadIdx.x + off];
			me.minn.x = min(me.minn.x, other.minn.x);
			me.minn.y = min(me.minn.y, other.minn.y);
			me.minn.z = min(me.minn.z, other.minn.z);
			me.maxx.x = max(me.maxx.x, other.maxx.x);
			me.maxx.y = max(me.maxx.y, other.maxx.y);
			me.maxx.z = max(me.maxx.z, other.maxx.z);
		}
		__syncthreads();
	}

	if (threadIdx.x == 0)
		boxes[blockIdx.x] = me;
}

__device__ __host__ float distBoxPoint(const MinMax& box, const float3& p)
{
	float3 diff = { 0, 0, 0 };
	if (p.x < box.minn.x || p.x > box.maxx.x)
		diff.x = min(abs(p.x - box.minn.x), abs(p.x - box.maxx.x));
	if (p.y < box.minn.y || p.y > box.maxx.y)
		diff.y = min(abs(p.y - box.minn.y), abs(p.y - box.maxx.y));
	if (p.z < box.minn.z || p.z > box.maxx.z)
		diff.z = min(abs(p.z - box.minn.z), abs(p.z - box.maxx.z));
	return diff.x * diff.x + diff.y * diff.y + diff.z * diff.z;
}

template<int K>
__device__ void updateKBest(const float3& ref, const float3& point, float* knn)
{
	float3 d = { point.x - ref.x, point.y - ref.y, point.z - ref.z };
	float dist = d.x * d.x + d.y * d.y + d.z * d.z;
	for (int j = 0; j < K; j++)
	{
		if (knn[j] > dist)
		{
			float t = knn[j];
			knn[j] = dist;
			dist = t;
		}
	}
}

__global__ void boxMeanDist(uint32_t P, float3* points, uint32_t* indices, MinMax* boxes, float* dists)
{
	int idx = cg::this_grid().thread_rank();
	if (idx >= P)
		return;

	float3 point = points[indices[idx]];
	float best[3] = { FLT_MAX, FLT_MAX, FLT_MAX };

	for (int i = max(0, idx - 3); i <= min(P - 1, idx + 3); i++)
	{
		if (i == idx)
			continue;
		updateKBest<3>(point, points[indices[i]], best);
	}

	float reject = best[2];
	best[0] = FLT_MAX;
	best[1] = FLT_MAX;
	best[2] = FLT_MAX;

	for (int b = 0; b < (P + BOX_SIZE - 1) / BOX_SIZE; b++)
	{
		MinMax box = boxes[b];
		float dist = distBoxPoint(box, point);
		if (dist > reject || dist > best[2])
			continue;

		for (int i = b * BOX_SIZE; i < min(P, (b + 1) * BOX_SIZE); i++)
		{
			if (i == idx)
				continue;
			updateKBest<3>(point, points[indices[i]], best);
		}
	}
	dists[indices[idx]] = (best[0] + best[1] + best[2]) / 3.0f;
}

void SimpleKNN::knn(int P, float3* points, float* meanDists)
{
	float3* result;
	cudaMalloc(&result, sizeof(float3));
	size_t temp_storage_bytes;

	float3 init = { 0, 0, 0 }, minn, maxx;

	cub::DeviceReduce::Reduce(nullptr, temp_storage_bytes, points, result, P, CustomMin(), init);
	thrust::device_vector<char> temp_storage(temp_storage_bytes);

	cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMin(), init);
	cudaMemcpy(&minn, result, sizeof(float3), cudaMemcpyDeviceToHost);

	cub::DeviceReduce::Reduce(temp_storage.data().get(), temp_storage_bytes, points, result, P, CustomMax(), init);
	cudaMemcpy(&maxx, result, sizeof(float3), cudaMemcpyDeviceToHost);

	thrust::device_vector<uint32_t> morton(P);
	thrust::device_vector<uint32_t> morton_sorted(P);
	coord2Morton << <(P + 255) / 256, 256 >> > (P, points, minn, maxx, morton.data().get());

	thrust::device_vector<uint32_t> indices(P);
	thrust::sequence(indices.begin(), indices.end());
	thrust::device_vector<uint32_t> indices_sorted(P);

	cub::DeviceRadixSort::SortPairs(nullptr, temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P);
	temp_storage.resize(temp_storage_bytes);

	cub::DeviceRadixSort::SortPairs(temp_storage.data().get(), temp_storage_bytes, morton.data().get(), morton_sorted.data().get(), indices.data().get(), indices_sorted.data().get(), P);

	uint32_t num_boxes = (P + BOX_SIZE - 1) / BOX_SIZE;
	thrust::device_vector<MinMax> boxes(num_boxes);
	boxMinMax << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get());
	boxMeanDist << <num_boxes, BOX_SIZE >> > (P, points, indices_sorted.data().get(), boxes.data().get(), meanDists);

	cudaFree(result);
}