Spaces:
Sleeping
Sleeping
File size: 6,482 Bytes
983d072 b9e7f35 983d072 8e18ff8 08a7509 8e18ff8 08a7509 8e18ff8 11b5377 fe42c78 11b5377 686fe7a 8e18ff8 7ffb950 8e18ff8 7ffb950 8e18ff8 9ac9544 8e18ff8 86d1cc7 8e18ff8 9ac9544 8e18ff8 7ffb950 9ac9544 8e18ff8 7ffb950 9ac9544 8e18ff8 7ffb950 9ac9544 8e18ff8 7ffb950 8e18ff8 9ac9544 3bab0ce 4c3811e 9ac9544 4c3811e 8e18ff8 1ef95ec 8e18ff8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
# List of available models
list_models = [
"SDXL-1.0", "SD-1.5", "OpenJourney-V4", "Anything-V4",
"Disney-Pixar-Cartoon", "Pixel-Art-XL", "Dalle-3-XL", "Midjourney-V4-XL",
]
# Function to generate images from text
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None):
if current_model == "SD-1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "SDXL-1.0":
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif current_model == "OpenJourney-V4":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything-V4":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney-Pixar-Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
elif current_model == "Midjourney-V4-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
css = """
/* Custom CSS */
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 900px;
margin: auto;
padding: 2rem;
border-radius: 15px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2);
text-align: center; /* Center the content horizontally */
}
/* Button Styles */
.gr-button {
color: white;
background-color: #007bff; /* Use a primary color for the background */
border: none;
padding: 10px 20px;
border-radius: 8px;
cursor: pointer;
transition: background-color 0.3s, color 0.3s;
}
.gr-button:hover {
background-color: #0056b3; /* Darken the background color on hover */
}
/* Custom CSS */
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 900px;
margin: auto;
padding: 2rem;
border-radius: 15px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2);
text-align: center; /* Center the content horizontally */
}
/* Button Styles */
.gr-button {
color: white;
background-color: #007bff; /* Use a primary color for the background */
border: none;
padding: 10px 20px;
border-radius: 8px;
cursor: pointer;
transition: background-color 0.3s, color 0.3s;
}
.gr-button:hover {
background-color: #0056b3; /* Darken the background color on hover */
}
/* Textbox Styles */
.gr-textbox {
border-radius: 8px;
border: 1px solid #ccc;
padding: 10px;
transition: border-color 0.3s;
}
.gr-textbox:focus {
border-color: #007bff;
outline: none;
}
/* Gallery Styles */
#gallery {
display: flex;
justify-content: center;
align-items: center;
margin-top: 2rem;
}
/* Automatically adjust photo size */
#gallery img {
max-width: 100%;
height: auto;
border-radius: 12px;
box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.2);
}
"""
# Creating Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.Markdown("<h1>AI Diffusion</h1>")
current_model = gr.Dropdown(label="Select Model", choices=list_models, value=list_models[1])
text_prompt = gr.Textbox(label="Enter Prompt", placeholder="Example: a cute dog", lines=2)
generate_button = gr.Button("Generate Image", variant='primary')
with gr.Column():
gr.Markdown("<h4>Advanced Settings</h4>")
with gr.Accordion("Advanced Customizations", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt (Optional)", placeholder="Example: blurry, unfocused", lines=2)
image_style = gr.Dropdown(label="Select Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style")
# Add more options if needed
with gr.Row():
image_output = gr.Image(type="pil", label="Output Image")
generate_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
# Launch the app
demo.launch() |