File size: 898 Bytes
7c2c429
fc1b009
 
 
 
7c2c429
ac0f811
7c2c429
 
fc1b009
7c2c429
 
fc1b009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
---
title: Energy ML Prediction System
emoji: 
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.42.0
app_file: app.py
pinned: false
license: mit
---

# Energy ML Prediction System

AI-powered energy consumption prediction and threshold exceedance detection.

## Models

- **Threshold Detection**: Random Forest classifier (AUC = 0.94)
- **Energy Prediction**: Random Forest & XGBoost regressors
- **Performance**: R² up to 0.72, MAE as low as 0.53 MWh

## Features

- Real-time predictions via simple JSON interface
- Multiple model comparison (RF vs XGBoost)
- Threshold exceedance probability (8.3 and 9.0 MWh)
- Secure access with authentication

## Usage

1. Select your model
2. Input JSON configuration
3. Get instant predictions

## Authentication

Login required for access.
- Username: admin
- Password: energy123

---
*Built with Gradio • Powered by scikit-learn & XGBoost*