File size: 9,876 Bytes
b664585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
#include "arg.h"
#include "common.h"
#include "llama.h"
#include <string>
#include <vector>
// #define GRIT_DEBUG
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
std::vector<std::vector<float>> result;
const llama_model * model = llama_get_model(ctx);
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
for (uint64_t i = 0; i < sentences.size(); i++) {
common_batch_clear(batch);
const std::string input_string = instruction + sentences[i];
std::vector<llama_token> inputs = common_tokenize(model, input_string, true, false);
const int32_t n_toks = inputs.size();
// GritLM seems to have EOS = ""
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L18
// inputs.push_back(llama_token_eos(model));
// we want to ignore instruction tokens for mean pooling
const int32_t n_inst = common_tokenize(model, instruction, true, false).size();
#ifdef GRIT_DEBUG
// debug tokens - should be matching as referenced in the GritLM sample
std::for_each(inputs.begin(), inputs.end(), [&ctx](llama_token t) {
std::printf("[%u:%s]", t, llama_token_to_piece(ctx, t).c_str());
});
std::printf("\n");
#endif
// add input to batch (this increments n_tokens)
for (int32_t j = 0; j < n_toks; j++) {
common_batch_add(batch, inputs[j], j, { 0 }, j >= n_inst);
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, true);
llama_set_causal_attn(ctx, false);
// run model
llama_decode(ctx, batch);
// get embedding dimensions
uint64_t n_embd = llama_n_embd(model);
// allocate embedding output
std::vector<float> emb_unorm(n_embd, 0.0f);
// sum up all token embeddings
for (int32_t k = n_inst; k < n_toks; k++) {
float * emb = llama_get_embeddings_ith(ctx, k);
for (uint64_t j = 0; j < n_embd; j++) {
emb_unorm[j] += emb[j];
}
}
// divide by number of tokens (mean pooling)
{
const uint64_t n_sent = n_toks - n_inst;
for (uint64_t j = 0; j < n_embd; j++) {
emb_unorm[j] /= n_sent;
}
}
std::vector<float> emb_norm(emb_unorm.size());
common_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd);
result.push_back(emb_norm);
#ifdef GRIT_DEBUG
// print out emb_norm
std::printf("embedding %ld: ", i);
for (uint64_t j = 0; j < n_embd; j++) {
std::printf("%.5f ", emb_norm[j]);
}
std::printf("\n\n");
#endif
}
llama_batch_free(batch);
return result;
}
static std::string generate(llama_context * ctx, llama_sampler * smpl, const std::string & prompt, bool stream) {
std::string result;
const llama_model * model = llama_get_model(ctx);
llama_token eos_token = llama_token_eos(model);
llama_kv_cache_clear(ctx);
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true);
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
std::vector<llama_token> inputs = common_tokenize(model, prompt, false, true);
int32_t i_current_token = 0;
while (true) {
common_batch_clear(bat);
{
const int32_t n_inputs = inputs.size();
for (int32_t i = 0; i < n_inputs; i++) {
common_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
}
}
inputs.clear();
llama_decode(ctx, bat);
llama_token token = llama_sampler_sample(smpl, ctx, bat.n_tokens - 1);
if (token == eos_token) {
break;
}
std::string piece = common_token_to_piece(ctx, token);
if (stream) {
std::printf("%s", piece.c_str());
std::fflush(stdout);
}
inputs.push_back(token);
result += piece;
}
if (stream) {
std::printf("\n");
}
llama_batch_free(bat);
return result;
}
static std::string gritlm_instruction(const std::string & instruction) {
return !instruction.empty() ? "<|user|>\n" + instruction + "\n<|embed|>\n" : "<|embed|>\n";
}
int main(int argc, char * argv[]) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
common_init();
llama_model_params mparams = common_model_params_to_llama(params);
llama_context_params cparams = common_context_params_to_llama(params);
llama_backend_init();
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
// create generation context
llama_context * ctx = llama_new_context_with_model(model, cparams);
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// ### Embedding/Representation ###
// samples taken from: https://github.com/ContextualAI/gritlm#basic
{
const std::string instruction = "Given a scientific paper title, retrieve the paper's abstract";
const std::vector<std::string> queries = {
"Bitcoin: A Peer-to-Peer Electronic Cash System",
"Generative Representational Instruction Tuning",
};
const std::vector<std::string> documents = {
"A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.",
"All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8X7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.",
};
// No need to add instruction for retrieval documents
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
const int n_embd = llama_n_embd(model);
const float cosine_sim_q0_d0 = common_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q0_d1 = common_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
const float cosine_sim_q1_d0 = common_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q1_d1 = common_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[0].c_str(), cosine_sim_q1_d0);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
}
// ### Generation ###
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
std::string response = generate(ctx, smpl, prompt, true);
}
llama_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
return 0;
}
|