File size: 18,306 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#include "arg.h"
#include "common.h"
#include "llama.h"
#include "ggml.h"
#include "pca.hpp"
#include "mean.hpp"

#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif

#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif

#include <algorithm>
#include <climits>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <iostream>
#include <string>
#include <tuple>
#include <vector>


//////////////////////////////////////////////////
// utils

template <class Iter>
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
    std::string ret;
    for (; begin != end; ++begin) {
        ret += common_token_to_piece(ctx, *begin);
    }

    return ret;
}

static void print_usage(int, char ** argv) {
    printf("\nexample usage:\n");
    printf("\n    CPU only:   %s -m ./llama-3.Q4_K_M.gguf\n", argv[0]);
    printf("\n    with GPU:   %s -m ./llama-3.Q4_K_M.gguf -ngl 99\n", argv[0]);
    printf("\n    advanced:   %s -m ./llama-3.Q4_K_M.gguf -ngl 99 --pca-iter 2000 --pca-batch 100\n", argv[0]);
    printf("\n    using mean: %s -m ./llama-3.Q4_K_M.gguf --method mean\n", argv[0]);
    printf("\n");
}

//////////////////////////////////////////////////


// cb_eval is reused for each pair of positive - negative prompt
struct callback_data {
    ggml_context * ctx_ggml = nullptr;   // holds v_pos, v_neg, v_diff_filtered

    int n_layers = 0;
    int n_tokens = 0;
    bool is_eval_pos = true;

    // each element of the vector correspond to one layer
    std::vector<struct ggml_tensor *> v_pos; // vector of matrices of size [n_embd, n_tokens]
    std::vector<struct ggml_tensor *> v_neg; // vector of matrices of size [n_embd, n_tokens]
    std::vector<struct ggml_tensor *> v_diff_filtered;   // vector of matrices of size [n_embd, n_nonzero_rows]. NOTE: n_nonzero_rows maybe different for each layer

    // save a tensor into either v_pos or v_neg (decided by is_eval_pos)
    void save_tensor_for_layer(struct ggml_tensor * t) {
        GGML_ASSERT(t->type == GGML_TYPE_F32);

        if (ctx_ggml == nullptr) {
            // alloc a new ctx_ggml if needed
            struct ggml_init_params params_ggml = {
                /*.mem_size   =*/ ggml_tensor_overhead() * n_layers * 3u,
                /*.mem_buffer =*/ NULL,
                /*.no_alloc   =*/ true,
            };
            ctx_ggml = ggml_init(params_ggml);
        }

        // copy tensor data
        auto n_bytes = ggml_nbytes(t);
        struct ggml_tensor * t_layer = ggml_new_tensor_2d(ctx_ggml, t->type, t->ne[0], t->ne[1]);
        t_layer->data = malloc(n_bytes); // TODO @ngxson : get rid of this malloc somehow
        ggml_backend_tensor_get(t, t_layer->data, 0, n_bytes);
        ggml_set_name(t_layer, ggml_get_name(t));
        //print_debug_tensor(t_layer);

        if (is_eval_pos) {
            v_pos.push_back(t_layer);
        } else {
            v_neg.push_back(t_layer);
        }
    }

    // calculate diff (v_pos - v_neg) and place the result back to v_pos
    // all zero rows in the diff tensor will also be removed
    // NOTE: final layer is ignored. we only have (n_layers - 1) to process
    std::vector<struct ggml_tensor *> calc_diff() {
        for (float il = 0; il < v_pos.size(); il++) {
            float * a = (float *) v_pos[il]->data;
            float * b = (float *) v_neg[il]->data;
            size_t n_elem = ggml_nelements(v_pos[il]);
            for (size_t j = 0; j < n_elem; j++) {
                a[j] -= b[j];
            }
            //print_debug_tensor(v_pos[i]);
            auto diff_filtered = filter_nonzero_rows(v_pos[il]);
            v_diff_filtered.push_back(diff_filtered);
        }
        return v_diff_filtered; // for convinient, we return the result std::vector
    }

    // delete zero rows from a given 2D tensor
    struct ggml_tensor * filter_nonzero_rows(struct ggml_tensor * a) {
        //printf("filter_nonzero_rows\n");
        auto is_row_all_zeros = [](struct ggml_tensor * t, int row, float eps) -> bool {
            // check if given row containing all zero elements
            int n_cols = t->ne[0]; // hint: should be equal to n_embd
            for (int col = 0; col < n_cols; ++col) {
                if (ggml_get_f32_nd(t, col, row, 0, 0) > eps) {
                    return false;
                }
            }
            return true;
        };
        std::vector<int> rows_to_copy; // the idx of non-zero cols (to be copied to row of diff_filtered)
        for (int i_row = 0; i_row < a->ne[1]; i_row++) {
            if (!is_row_all_zeros(a, i_row, 1e-6)) {
                rows_to_copy.push_back(i_row);
            }
        }

        // get "n_nonzero_rows" for the output "diff_filtered"
        int n_nonzero_rows = rows_to_copy.size();
        //printf("n_nonzero_rows: %d\n", n_nonzero_rows);
        int n_embd = a->ne[0];
        GGML_ASSERT(n_nonzero_rows > 0);

        // diff_filtered: [n_embd, n_nonzero_rows]
        struct ggml_tensor * diff_filtered = ggml_new_tensor_2d(
            ctx_ggml, GGML_TYPE_F32, n_embd, n_nonzero_rows);
        ggml_format_name(diff_filtered, "diff_filtered_%s", a->name);
        diff_filtered->data = malloc(ggml_nbytes(diff_filtered));

        // copy non-zero rows
        for (int dest_row = 0; dest_row < n_nonzero_rows; dest_row++) {
            int src_row = rows_to_copy[dest_row];
            for (int i = 0; i < n_embd; i++) {
                float src_elem = ggml_get_f32_nd(a, i, src_row, 0, 0);
                ggml_set_f32_nd(diff_filtered, i, dest_row, 0, 0, src_elem);
            }
        }

        //print_debug_tensor(diff_filtered);

        return diff_filtered;
    }

    // we don't implement destructor, because we want to reuse callback_data. we just want to free the tensors
    void reset() {
        for (auto ptr : v_pos) free(ptr->data);
        for (auto ptr : v_neg) free(ptr->data);
        for (auto ptr : v_diff_filtered) free(ptr->data);
        v_pos.clear();
        v_neg.clear();
        v_diff_filtered.clear();
        if (ctx_ggml) {
            ggml_free(ctx_ggml);
        }
        ctx_ggml = nullptr;
    }
};

/**
 * process_ctx is used to store the ggml context for pre-post processing the diff vectors
 * in short, input => v_diff and output => v_final
 */
struct train_context {
    ggml_context * ctx_ggml;
    int n_embd;
    int n_layers;

    /* pair of prompts to be used for generating final vector */
    std::vector<std::string> positive_entries;
    std::vector<std::string> negative_entries;

    // each element of the vector correspond to one layer
    // NOTE: the last layer is discard. therefore, we will have (n_layers - 1) elements here
    // NOTE (2): v_diff is transposed from v_diff_tmp
    std::vector<struct ggml_tensor *> v_diff;  // vector of matrices of size [m, n_embd] where m ~ n_tokens * n_completions (v_diff contains no zero-rows)
    std::vector<struct ggml_tensor *> v_final; // vector of vectors of size [n_embd] to be written to file

    // to easily re-alloc when concat v_diff, we temporary store v_diff in a vector instead of a tensor
    // v_diff_tmp will get converted unto v_diff later on
    std::vector<std::vector<uint8_t>> v_diff_tmp;

    train_context(int n_embd_, int n_layers_) {
        n_embd = n_embd_;
        n_layers = n_layers_;
        struct ggml_init_params params_ggml = {
            /*.mem_size   =*/ ggml_tensor_overhead() * (n_layers - 1) * 2u,
            /*.mem_buffer =*/ NULL,
            /*.no_alloc   =*/ true,
        };
        ctx_ggml = ggml_init(params_ggml);
        for (int il = 0; il < n_layers - 1; il++) {
            std::vector<uint8_t> empty;
            v_diff_tmp.push_back(empty);
            auto t = ggml_new_tensor_1d(ctx_ggml, GGML_TYPE_F32, n_embd);
            t->data = malloc(ggml_nbytes(t)); // TODO: get rid of malloc if possible
            v_final.push_back(t);
        }
    }

    // add new rows into existing tensor in v_diff_tmp
    void concat_diff_tmp(const std::vector<struct ggml_tensor *> & diff_filtered) {
        GGML_ASSERT((int) diff_filtered.size() == n_layers - 1);
        for (int il = 0; il < n_layers - 1; il++) {
            auto t = diff_filtered[il];
            auto & diff_tmp = v_diff_tmp[il];
            size_t curr_size = diff_tmp.size();
            diff_tmp.resize(curr_size + ggml_nbytes(t));
            memcpy(diff_tmp.data() + curr_size, t->data, ggml_nbytes(t));
        }
    }

    // build the v_diff tensors from v_diff_tmp (v_diff need to be transposed)
    // TODO @ngxson : maybe add option NOT to transpose v_diff; will be useful for "mean" method
    void build_v_diff(bool transpose) {
        printf("build_v_diff\n");
        for (int il = 0; il < n_layers - 1; il++) {
            auto & diff_tmp = v_diff_tmp[il];
            int n_elem = diff_tmp.size() / sizeof(float);
            GGML_ASSERT(n_elem % n_embd == 0);
            int n_rows = n_elem / n_embd;
            struct ggml_tensor * diff = transpose
                ? ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_rows, n_embd)
                : ggml_new_tensor_2d(ctx_ggml, GGML_TYPE_F32, n_embd, n_rows);
            ggml_set_name(diff, (std::string("diff_") + std::to_string(il)).c_str());
            diff->data = malloc(ggml_nbytes(diff)); // TODO: get rid of this malloc if possible
            if (transpose) {
                // copy data & transpose
                float * arr = (float *) diff_tmp.data();
                for (int ir = 0; ir < n_rows; ++ir) {
                    for (int ic = 0; ic < n_embd; ++ic) {
                        float f = arr[ir*n_embd + ic];
                        ggml_set_f32_nd(diff, ir, ic, 0, 0, f);
                    }
                }
            } else {
                // only copy
                memcpy(diff->data, diff_tmp.data(), ggml_nbytes(diff));
            }
            v_diff.push_back(diff);
            print_debug_tensor(diff);
            // free memory of diff_tmp
            diff_tmp.resize(0);
        }
    }

    ~train_context() {
        for (auto ptr : v_final) free(ptr->data);
        for (auto ptr : v_diff) free(ptr->data);
        // no need to free v_diff_tmp, since we didn't use malloc
        ggml_free(ctx_ggml);
    }
};

struct tokenized_prompt {
    std::vector<llama_token> tokens_pos;
    std::vector<llama_token> tokens_neg;
    size_t max_seq_len;

    tokenized_prompt(llama_context * ctx, std::string pos, std::string neg) {
        const bool add_bos = llama_add_bos_token(llama_get_model(ctx));
        tokens_pos = common_tokenize(ctx, pos, add_bos, true);
        tokens_neg = common_tokenize(ctx, neg, add_bos, true);
        max_seq_len = std::max(tokens_pos.size(), tokens_neg.size());
        padding_seq(ctx, tokens_pos, max_seq_len);
        padding_seq(ctx, tokens_neg, max_seq_len);
    }

    void padding_seq(llama_context * ctx, std::vector<llama_token> & tokens, size_t len) {
        // TODO: customize padding token
        std::vector<llama_token> pad_tokens = common_tokenize(ctx, " ", false);
        llama_token pad_tok = pad_tokens.back();
        while (tokens.size() < len) {
            tokens.push_back(pad_tok);
        }
    }
};

//////////////////////////////////////////////////

template <typename T>
static std::string to_string(const T & val) {
    std::stringstream ss;
    ss << val;
    return ss.str();
}

static std::vector<std::string> ctrlvec_load_prompt_file(std::string path, bool skip_empty_lines) {
    std::vector<std::string> output;
    std::ifstream file(path);
    if (!file.is_open()) {
        fprintf(stderr, "error: unable to open file: %s\n", path.c_str());
        exit(1);
    }
    std::string line;
    while (std::getline(file, line)) {
        bool is_skip = skip_empty_lines && line.empty();
        if (!is_skip) {
            string_process_escapes(line);
            output.push_back(line);
        }
    }
    file.close();
    return output;
}

//////////////////////////////////////////////////

static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
    auto * cb_data = (callback_data *) user_data;
    static const char * l_out_name = "l_out";
    const bool is_l_out = strncmp(t->name, l_out_name, strlen(l_out_name)) == 0;

    if (ask) {
        return is_l_out;
    }

    if (!is_l_out || t->ne[1] != cb_data->n_tokens) {
        return true;
    }

    // save the tensor to current context
    cb_data->save_tensor_for_layer(t);
    return true;
}

static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
    llama_kv_cache_clear(ctx);
    if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
        fprintf(stderr, "%s : failed to eval\n", __func__);
        return false;
    }
    return true;
}

static void export_gguf(const std::vector<struct ggml_tensor *> & v_ctrl, const std::string fname, const std::string model_hint) {
    struct gguf_context * ctx = gguf_init_empty();

    const std::string arch = "controlvector";
    gguf_set_val_str(ctx, "general.architecture", arch.c_str());
    gguf_set_val_str(ctx, (arch + ".model_hint").c_str(), model_hint.c_str());
    gguf_set_val_i32(ctx, (arch + ".layer_count").c_str(), v_ctrl.size());

    for (size_t i = 0; i < v_ctrl.size(); ++i) {
        gguf_add_tensor(ctx, v_ctrl[i]);
        print_debug_tensor(v_ctrl[i]);
        printf("Added tensor: %s\n", v_ctrl[i]->name);
    }

    printf("%s: writing file...\n", __func__);
    gguf_write_to_file(ctx, fname.c_str(), false);
    printf("%s: wrote file '%s'\n", __func__, fname.c_str());
    gguf_free(ctx);
}

/**
 * Load prompt files and completion file.
 * Then format each pair of prompt + completion to make an entry.
 */
static int prepare_entries(common_params & params, train_context & ctx_train) {
    // load prompts
    std::vector<std::string> positive_prompts = ctrlvec_load_prompt_file(params.cvector_positive_file, true);
    std::vector<std::string> negative_prompts = ctrlvec_load_prompt_file(params.cvector_negative_file, true);
    if (positive_prompts.size() != negative_prompts.size()) {
        fprintf(stderr, "number of positive and negative prompts must be equal\n");
        return 1;
    }
    if (positive_prompts.empty()) {
        fprintf(stderr, "must provide at least one prompt pair\n");
        return 1;
    }
    ctx_train.positive_entries = positive_prompts;
    ctx_train.negative_entries = negative_prompts;
    return 0;
}

int main(int argc, char ** argv) {
    common_params params;

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
        return 1;
    }

    if (params.n_pca_iterations % params.n_pca_batch != 0) {
        fprintf(stderr, "PCA iterations must by multiply of PCA batch size\n");
        return 1;
    }


    callback_data cb_data;

    // pass the callback to the backend scheduler
    // it will be executed for each node during the graph computation
    params.cb_eval = cb_eval;
    params.cb_eval_user_data = &cb_data;
    params.warmup = false;

    print_build_info();
    llama_backend_init();
    llama_numa_init(params.numa);

    // load the model to get hparams
    common_init_result llama_init = common_init_from_params(params);

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;

    // int n_ctx = llama_n_ctx(ctx);
    int n_layers = llama_n_layer(model);
    int n_embd = llama_n_embd(model);
    // get model hint param (a.k.a model arch name)
    char model_hint[128];
    llama_model_meta_val_str(model, "general.architecture", model_hint, 128);

    // init train_context
    train_context ctx_train(n_embd, n_layers);

    // load and prepare entries for training
    prepare_entries(params, ctx_train);

    // we have to pretokenize everything because otherwise we don't know how much overhead to allocate ctx_diffs_wrapped
    std::vector<tokenized_prompt> tokenized_prompts;
    size_t n_total_tokens = 0;
    for (size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
        tokenized_prompt t(ctx, ctx_train.positive_entries[i], ctx_train.negative_entries[i]);
        n_total_tokens += 2 * t.max_seq_len;
        tokenized_prompts.push_back(std::move(t));
    }

    std::cout << "n_total_tokens: " << n_total_tokens << std::endl;

    for(size_t i = 0; i < ctx_train.positive_entries.size(); ++i) {
        bool success = false;
        tokenized_prompt t = tokenized_prompts[i];
        cb_data.n_layers = n_layers;
        cb_data.n_tokens = t.max_seq_len;

        printf("Evaluating prompt[%d/%d]: \"%s\" - \"%s\" (%d tokens)\n",
            (int) i+1, (int) ctx_train.positive_entries.size(),
            tokens_to_str(ctx, t.tokens_pos.cbegin(), t.tokens_pos.cend()).c_str(),
            tokens_to_str(ctx, t.tokens_neg.cbegin(), t.tokens_neg.cend()).c_str(),
            (int) t.max_seq_len);

        cb_data.is_eval_pos = true;
        success = get_hidden_layers(ctx, t.tokens_pos);
        if (!success) break;

        cb_data.is_eval_pos = false;
        success = get_hidden_layers(ctx, t.tokens_neg);
        if (!success) break;

        // calculate diff and remove all zero rows
        auto v_diff_filtered = cb_data.calc_diff();

        // save & concat the filtered v_diff to ctx_train
        ctx_train.concat_diff_tmp(v_diff_filtered);

        // reset for next iteration
        cb_data.reset();
    }

    // done with the model, we can now free it to make gain some memory
    printf("Done evaluate prompts, unload model...\n");
    llama_free(ctx);
    llama_free_model(model);

    bool use_pca = params.cvector_dimre_method == DIMRE_METHOD_PCA;

    // prepare ctx_train for PCA
    ctx_train.build_v_diff(use_pca);

    if (use_pca) {
        // run PCA
        PCA::pca_params pca_params;
        pca_params.n_threads    = params.cpuparams.n_threads;
        pca_params.n_batch      = params.n_pca_batch;
        pca_params.n_iterations = params.n_pca_iterations;
        PCA::run_pca(pca_params, ctx_train.v_diff, ctx_train.v_final);
    } else {
        // run mean
        mean::run(ctx_train.v_diff, ctx_train.v_final);
    }

    // write output vectors to gguf
    export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);

    llama_backend_free();

    return 0;
}