File size: 8,601 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from __future__ import annotations
from abc import ABC, ABCMeta, abstractmethod

import logging
from typing import Any, Callable

import numpy as np
from numpy.typing import DTypeLike


logger = logging.getLogger(__name__)


class LazyMeta(ABCMeta):

    def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
        def __getattr__(self, name: str) -> Any:
            meta_attr = getattr(self._meta, name)
            if callable(meta_attr):
                return type(self)._wrap_fn(
                    (lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
                    use_self=self,
                )
            elif isinstance(meta_attr, self._tensor_type):
                # e.g. self.T with torch.Tensor should still be wrapped
                return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
            else:
                # no need to wrap non-tensor properties,
                # and they likely don't depend on the actual contents of the tensor
                return meta_attr

        namespace["__getattr__"] = __getattr__

        # need to make a builder for the wrapped wrapper to copy the name,
        # or else it fails with very cryptic error messages,
        # because somehow the same string would end up in every closures
        def mk_wrap(op_name: str, *, meta_noop: bool = False):
            # need to wrap the wrapper to get self
            def wrapped_special_op(self, *args, **kwargs):
                return type(self)._wrap_fn(
                    getattr(type(self)._tensor_type, op_name),
                    meta_noop=meta_noop,
                )(self, *args, **kwargs)
            return wrapped_special_op

        # special methods bypass __getattr__, so they need to be added manually
        # ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
        # NOTE: doing this from a metaclass is very convenient
        # TODO: make this even more comprehensive
        for binary_op in (
            "lt", "le", "eq", "ne", "ge", "gt", "not"
            "abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
            "neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
            "iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
            "radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
        ):
            attr_name = f"__{binary_op}__"
            # the result of these operators usually has the same shape and dtype as the input,
            # so evaluation on the meta tensor can be skipped.
            namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)

        for special_op in (
            "getitem", "setitem", "len",
        ):
            attr_name = f"__{special_op}__"
            namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)

        return super().__new__(cls, name, bases, namespace, **kwargs)


# Tree of lazy tensors
class LazyBase(ABC, metaclass=LazyMeta):
    _tensor_type: type
    _meta: Any
    _data: Any | None
    _args: tuple
    _kwargs: dict[str, Any]
    _func: Callable[[Any], Any] | None

    def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
        super().__init__()
        self._meta = meta
        self._data = data
        self._args = args
        self._kwargs = kwargs if kwargs is not None else {}
        self._func = func
        assert self._func is not None or self._data is not None

    def __init_subclass__(cls) -> None:
        if "_tensor_type" not in cls.__dict__:
            raise TypeError(f"property '_tensor_type' must be defined for {cls!r}")
        return super().__init_subclass__()

    @staticmethod
    def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
        # TODO: dict and set
        if isinstance(o, (list, tuple)):
            L = []
            for item in o:
                L.append(LazyBase._recurse_apply(item, fn))
            if isinstance(o, tuple):
                L = tuple(L)
            return L
        elif isinstance(o, LazyBase):
            return fn(o)
        else:
            return o

    @classmethod
    def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
        def wrapped_fn(*args, **kwargs):
            if kwargs is None:
                kwargs = {}
            args = ((use_self,) if use_self is not None else ()) + args

            meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
            # TODO: maybe handle tensors in kwargs too

            if isinstance(meta_noop, bool) and not meta_noop:
                try:
                    res = fn(*meta_args, **kwargs)
                except NotImplementedError:
                    # running some operations on PyTorch's Meta tensors can cause this exception
                    res = None
            else:
                # some operators don't need to actually run on the meta tensors
                assert len(args) > 0
                res = args[0]
                assert isinstance(res, cls)
                res = res._meta
                # allow operations to override the dtype and shape
                if meta_noop is not True:
                    if isinstance(meta_noop, tuple):
                        dtype, shape = meta_noop
                        assert callable(shape)
                        res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
                    else:
                        res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)

            if isinstance(res, cls._tensor_type):
                return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
            else:
                del res  # not needed
                # non-tensor return likely relies on the contents of the args
                # (e.g. the result of torch.equal)
                eager_args = cls.to_eager(args)
                return fn(*eager_args, **kwargs)
        return wrapped_fn

    @classmethod
    def to_eager(cls, t: Any) -> Any:
        def simple_to_eager(_t: LazyBase) -> Any:
            if _t._data is not None:
                return _t._data

            # NOTE: there's a recursion limit in Python (usually 1000)

            assert _t._func is not None
            _t._args = cls._recurse_apply(_t._args, simple_to_eager)
            _t._data = _t._func(*_t._args, **_t._kwargs)
            # sanity check
            assert _t._data is not None
            assert _t._data.dtype == _t._meta.dtype
            assert _t._data.shape == _t._meta.shape

            return _t._data

        # recurse into lists and/or tuples, keeping their structure
        return cls._recurse_apply(t, simple_to_eager)

    @classmethod
    def eager_to_meta(cls, t: Any) -> Any:
        return cls.meta_with_dtype_and_shape(t.dtype, t.shape)

    # must be overridden, meta tensor init is backend-specific
    @classmethod
    @abstractmethod
    def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass

    @classmethod
    def from_eager(cls, t: Any) -> Any:
        if type(t) is cls:
            # already lazy
            return t
        elif isinstance(t, cls._tensor_type):
            return cls(meta=cls.eager_to_meta(t), data=t)
        else:
            return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}")


class LazyNumpyTensor(LazyBase):
    _tensor_type = np.ndarray

    shape: tuple[int, ...]  # Makes the type checker happy in quants.py

    @classmethod
    def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]:
        # The initial idea was to use np.nan as the fill value,
        # but non-float types like np.int16 can't use that.
        # So zero it is.
        cheat = np.zeros(1, dtype)
        return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))

    def astype(self, dtype, *args, **kwargs):
        meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
        full_args = (self, dtype,) + args
        return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))

    def tofile(self, *args, **kwargs):
        eager = LazyNumpyTensor.to_eager(self)
        return eager.tofile(*args, **kwargs)

    # TODO: __array_function__