File size: 16,770 Bytes
48ac659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b39cbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48ac659
7b39cbc
 
 
 
 
 
 
 
48ac659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
'''
Ke Chen | knutchen@ucsd.edu & Nikita Srivatsan | nsrivats@cmu.edu
Load the mp3 format data from audiostock-full dataset
'''
import json
import numpy as np
import os
import pandas as pd
from pathlib import PurePosixPath
import random
import torch
import torchaudio
from torch.utils.data import Dataset
import sys

from lib import *
from utils import *

import torch.utils.data

def int16_to_float32(x):
    return (x / 32767.0).type(torch.float)


def float32_to_int16(x):
    x = torch.clip(x, min=-1., max=1.)
    return (x * 32767.).type(torch.int16)

def my_collate(batch):
    batch = [x for x in batch if x is not None]
    if len(batch) == 0:
        return batch
    else:
        return torch.utils.data.dataloader.default_collate(batch)

class AudiostockDataset(Dataset):
    '''
    Args:
        dataset_path (str): the dataset folder path
        train (bool): if True, we randomly return a 10-sec chunk from each audio file; if False, we return the middle 10-sec chunk (fixed)
        split (str): a txt file to assign the idx in this dataset (for trainng, validation and testing)
        factor (float): how many time we need to loop the whole dataset, this is to increase the number of training data batches in each epoch
        whole_track (bool): if True, the dataset will return the full length of the audio file. However, this means the batch_size = 1, and it is usually in the test/validation case
    '''
    def __init__(self, dataset_path, tweet_prefix=True, prefix_length=10, normalize=False, dupefile='dupes.pkl', train = True, split = None, factor = 1.0, whole_track = False, verbose=True, dedup=True, file_list=[]):
        super().__init__()
        # set up parameters
        self.max_seq_len = 150
        self.tweet_prefix = tweet_prefix
        if self.tweet_prefix:
            self.max_seq_len *= 2
        self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2', local_files_only=True)
        self.prefix_length = prefix_length
        self.normalize = normalize
        self.id2neighbor = defaultdict(lambda: '')

        if dedup:
            if dupefile is not None and os.path.exists(dupefile):
                with open(dupefile, 'rb') as dupefile:
                    self.is_rep = pickle.load(dupefile).is_rep
            elif dupefile == 'both':
                with open('dupes.pkl', 'rb') as dupefile:
                    dupes1 = pickle.load(dupefile)
                with open('dupes_audio.pkl', 'rb') as dupefile:
                    dupes2 = pickle.load(dupefile)
                self.is_rep = defaultdict(lambda: True)
                for k,v in dupes1.is_rep.items():
                    self.is_rep[k] = v
                for k,v in dupes2.is_rep.items():
                    self.is_rep[k] = v
            else:
                sys.exit('Could not find duplicate file')

        subfolders = [f'audiostock-part-{i}' for i in range(1,9)]
        self.label_path = os.path.join(dataset_path, 'audiostock-full-label')
        self.whole_track = whole_track
        self.file_list = file_list
        
        # select out the elements for this split
        if self.file_list == []:
            temp_file_list = []
            for subfolder in subfolders:
                temp_file_list += [os.path.join(dataset_path, subfolder, f) for f in os.listdir(os.path.join(dataset_path, subfolder)) if not dedup or self.is_rep[os.path.basename(f).split('.')[0]]]
            if split is not None:
                split = set(np.loadtxt(split, dtype = str))
                self.file_list = [f for f in temp_file_list if os.path.basename(f).split('.')[0] in split]
            else:
                self.file_list = temp_file_list
        
        self.train = train
        self.total_len = int(len(self.file_list) * factor)
        if verbose:
            print(f'Dataset Loaded | File Num.: {len(self.file_list)} | Batches per epoch: {self.total_len}')

    def precompute_rand(self, candidate_set=None):
        self.id2neighbor = defaultdict(lambda: '')
        # if train
        if candidate_set is None:
            my_ids = []
            candidate_caps = []
            temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
            for batch in temp_loader:
                my_ids += batch['id']
                candidate_caps += batch['short_text']
            for idx in my_ids:
                self.id2neighbor[idx] = random.choice(candidate_caps)
        # if test
        else:
            temp_loader = DataLoader(candidate_set, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
            candidate_caps = []
            for batch in temp_loader:
                candidate_caps += batch['short_text']
            temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
            my_ids = []
            for batch in temp_loader:
                my_ids += batch['id']
            for idx in my_ids:
                self.id2neighbor[idx] = random.choice(candidate_caps)

    def precompute_gold(self):
        self.id2neighbor = defaultdict(lambda: '')
        temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
        for batch in temp_loader:
            for idx,short_text in zip(batch['id'], batch['short_text']):
                self.id2neighbor[idx] = short_text

    def precompute_blank(self):
        self.id2neighbor = defaultdict(lambda: '\n')

    def precompute_neighbors(self, model, candidate_set=None):
        print('Precomputing neighbors')
        self.id2neighbor = defaultdict(lambda: '')
        # if train and model given
        if candidate_set is None:
            # compute waveform embeddings for each song
            cand_features = None
            cand_ids = []
            cand_caps = []
            temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
            progress = tqdm(total=len(temp_loader), dynamic_ncols=True)
            for batch in temp_loader:
                with torch.no_grad():
                    batch_features = model.embed_waveform(batch['waveform'].cuda())
                    if cand_features is not None:
                        cand_features = torch.cat([cand_features, batch_features])
                    else:
                        cand_features = batch_features
                    cand_ids += batch['id']
                    cand_caps += batch['short_text']
                progress.update()
            progress.close()
            my_features = cand_features
            my_ids = cand_ids
        # if test and model given
        else:
            # check if we already precomputed the embeddings
            pickle_filename = 'nn_features.pkl'
            if os.path.isfile(pickle_filename):
                with open(pickle_filename, 'rb') as f:
                    (cand_features, cand_ids, cand_caps) = pickle.load(f)
            else:
                # build the features from the provided set instead of self
                cand_features = None
                cand_ids = []
                cand_caps = []
                temp_loader = DataLoader(candidate_set, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
                progress = tqdm(total=len(temp_loader), dynamic_ncols=True)
                for batch in temp_loader:
                    with torch.no_grad():
                        batch_features = model.embed_waveform(batch['waveform'].cuda())
                        if cand_features is not None:
                            cand_features = torch.cat([cand_features, batch_features])
                        else:
                            cand_features = batch_features
                        cand_ids += batch['id']
                        #cand_caps += [' '.join(x.split()[:10]) for x in batch['short_text']]
                        cand_caps += batch['short_text']
                    progress.update()
                progress.close()
                # dump to pickle so we don't have to redo this each time
                with open(pickle_filename, 'wb') as f:
                    pickle.dump((cand_features, cand_ids, cand_caps), f)
            # load up my own ids and features
            my_features = None
            my_ids = []
            temp_loader = DataLoader(self, batch_size=32, shuffle=False, num_workers=32, drop_last=False, collate_fn=my_collate)
            progress = tqdm(total=len(temp_loader), dynamic_ncols=True)
            for batch in temp_loader:
                with torch.no_grad():
                    batch_features = model.embed_waveform(batch['waveform'].cuda())
                    if my_features is not None:
                        my_features = torch.cat([my_features, batch_features])
                    else:
                        my_features = batch_features
                    my_ids += batch['id']
                progress.update()
            progress.close()
        is_self_sim = my_ids == cand_ids
        for idx,audio_id in tqdm(enumerate(my_ids), total=len(my_ids), dynamic_ncols=True):
            features = my_features[idx]
            similarities = features @ cand_features.T
            # remove identical matches
            if is_self_sim:
                similarities[idx] = float('-inf')
            best_idx = torch.argmax(similarities)
            most_similar_caption = cand_caps[best_idx]
            self.id2neighbor[my_ids[idx]] = most_similar_caption

    def pad_tokens(self, tokens, tokens_tweet):
        tweet_text_len = 0
        if self.tweet_prefix:
            tweet_text_len = tokens_tweet[:self.max_seq_len // 2].shape[0]
            tokens = torch.cat((tokens_tweet[:tweet_text_len], tokens))
        padding = self.max_seq_len - tokens.shape[0]
        if padding > 0:
            tokens = torch.cat((tokens, torch.zeros(padding, dtype=torch.int64) - 1))
        elif padding < 0:
            tokens = tokens[:self.max_seq_len]
        mask = tokens.ge(0)  # mask is zero where we out of sequence
        tokens[~mask] = 0
        mask = mask.float()
        mask = torch.cat((torch.ones(self.prefix_length), mask), dim=0)  # adding prefix mask
        return tokens, mask, tweet_text_len

    def read_wav(self, filename):
        # pickling functionality removed since it shouldn't be necessary
        # chunk
        try:
            num_frames = torchaudio.info(filename).num_frames
        except:
            return None
        # make sure it wasn't empty, if so die
        if num_frames == 0:
            return None
        sta = 0
        if not self.whole_track:
            if self.train: 
                sta = random.randint(0, num_frames - 441001)
            else:
                sta = (num_frames - 441001) // 2
            num_frames = 441000

        y, sr = torchaudio.load(filename, frame_offset=sta, num_frames=num_frames)
        # resample
        y = torchaudio.functional.resample(y, sr, 48000)
        y = y[:, :441000]
        # mono
        y = y.mean(dim=0)
        # normalize
        y = int16_to_float32(float32_to_int16(y))
        return y

    def __getitem__(self, index):
        idx = index % len(self.file_list)
        data_dict = {}
        f = self.file_list[idx]
        lf = os.path.join(self.label_path, os.path.basename(f).split('.')[0] + '.json')
        data_dict['waveform'] = self.read_wav(f)
        if os.path.isfile(lf):
            with open(lf,'r') as label_file:
                label_data = json.load(label_file)
                data_dict['id'] = label_data['id']
                data_dict['short_text'] = label_data['short_text']
                if self.normalize:
                    data_dict['short_text'] = ' '.join(muscaps_tokenize(data_dict['short_text']))
                if 'long_text' in label_data and label_data['long_text'] is not None:
                    data_dict['long_text'] = label_data['long_text']
                else:
                    data_dict['long_text'] = ''
                '''
                data_dict['tag'] = label_data['tag']
                data_dict['impression'] = label_data['impression']
                data_dict['purpose'] = label_data['purpose']
                '''
        else:
            data_dict['id'] = os.path.basename(f).split('.')[0]
            data_dict['short_text'] = ''
            data_dict['long_text'] = ''

        # tokenize the caption
        caption_proc = preproc(data_dict['short_text'], self.tokenizer)
        tokens = torch.tensor(caption_proc, dtype=torch.int64)
        tweet_text = self.id2neighbor[data_dict['id']] if self.tweet_prefix else ''
        tweet_proc = preproc(tweet_text, self.tokenizer, stop=False)
        tokens_tweet = torch.tensor(tweet_proc, dtype=torch.int64)
        tokens, mask, tweet_text_len = self.pad_tokens(tokens, tokens_tweet)
        data_dict['tokens'] = tokens
        data_dict['mask'] = mask
        data_dict['tweet_text_len'] = tweet_text_len
        data_dict['tweet_text'] = tweet_text

        if (data_dict['id'] is None or
            data_dict['short_text'] is None or
            data_dict['long_text'] is None or
            data_dict['tokens'] is None or
            data_dict['mask'] is None or
            data_dict['tweet_text_len'] is None or
            data_dict['tweet_text'] is None or
            data_dict['waveform'] is None
        ):
            return None
        else:
            return data_dict

    def __len__(self): 
        return self.total_len

class MusicCapsDataset(AudiostockDataset):
    def __init__(self, dataset_path, args, train = True, split = None, factor = 1.0, whole_track = False, verbose=True, dedup=True):
        super(AudiostockDataset, self).__init__()
        # set up parameters
        self.max_seq_len = 150
        self.tweet_prefix = args.tweet_prefix
        if self.tweet_prefix:
            self.max_seq_len *= 2
        self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2', local_files_only=True)
        self.prefix_length = args.prefix_length
        self.normalize = args.normalize
        self.whole_track = whole_track

        self.label_path = os.path.join(dataset_path, 'audio')
        self.file_list = []
        self.label_data = []
        label_reader = pd.read_csv(f'{dataset_path}/musiccaps-resplit.csv')
        for idx,row in label_reader.iterrows():
            if (row['is_audioset_eval'] == 1 and split == 'musiccaps_eval') \
              or (row['is_audioset_eval'] == 0 and split == 'musiccaps_train') \
              or (row['is_audioset_eval'] == 2 and split == 'musiccaps_dev'):
                data_dict = {}
                data_dict['id'] = row['ytid']
                self.file_list.append(f"{dataset_path}/audio/{data_dict['id']}.wav")
                data_dict['short_text'] = row['caption']
                if self.normalize:
                    data_dict['short_text'] = ' '.join(muscaps_tokenize(data_dict['short_text']))
                data_dict['long_text'] = ''
                data_dict['tag'] = row['aspect_list']
                self.label_data.append(data_dict)

        self.train = train
        self.total_len = int(len(self.file_list) * factor)
        if verbose:
            print(f'Dataset Loaded | File Num.: {len(self.file_list)} | Batches per epoch: {self.total_len}')

    def __getitem__(self, index):
        idx = index % len(self.file_list)
        data_dict = {}
        f = self.file_list[idx]
        data_dict['waveform'] = self.read_wav(f)
        for k,v in self.label_data[idx].items():
            data_dict[k] = v

        # tokenize the caption
        caption_proc = preproc(data_dict['short_text'], self.tokenizer)
        tokens = torch.tensor(caption_proc, dtype=torch.int64)
        tweet_text = self.id2neighbor[data_dict['id']] if self.tweet_prefix else ''
        tweet_proc = preproc(tweet_text, self.tokenizer, stop=False)
        tokens_tweet = torch.tensor(tweet_proc, dtype=torch.int64)
        tokens, mask, tweet_text_len = self.pad_tokens(tokens, tokens_tweet)
        data_dict['tokens'] = tokens
        data_dict['mask'] = mask
        data_dict['tweet_text_len'] = tweet_text_len
        data_dict['tweet_text'] = tweet_text

        if (data_dict['id'] is None or
            data_dict['short_text'] is None or
            data_dict['long_text'] is None or
            data_dict['tokens'] is None or
            data_dict['mask'] is None or
            data_dict['tweet_text_len'] is None or
            data_dict['tweet_text'] is None or
            data_dict['waveform'] is None
        ):
            return None
        else:
            return data_dict