Spaces:
Running
Running
File size: 12,877 Bytes
32d37f5 bffe7b3 dc70a00 c59c6ab bffe7b3 dc70a00 32d37f5 dc70a00 0d85a96 7a5e8c5 32d37f5 dc70a00 bffe7b3 dc70a00 cb74f9c dc70a00 87c7391 dc70a00 c59c6ab dc70a00 cb74f9c dc70a00 bffe7b3 dc70a00 bffe7b3 dc70a00 cb74f9c dc70a00 bffe7b3 dc70a00 ec0a6ec dc70a00 bffe7b3 dc70a00 bffe7b3 dc70a00 cb74f9c dc70a00 cb74f9c bffe7b3 dc70a00 bffe7b3 dc70a00 bffe7b3 dc70a00 bffe7b3 dc70a00 c59c6ab dc70a00 bffe7b3 dc70a00 cb74f9c 32d37f5 dc70a00 32d37f5 dc70a00 32d37f5 dc70a00 32d37f5 dc70a00 bffe7b3 dc70a00 c59c6ab dc70a00 c59c6ab dc70a00 c59c6ab bffe7b3 dc70a00 bffe7b3 dc70a00 c59c6ab dc70a00 87c7391 dc70a00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
import streamlit as st
import time
from typing import List
from streamlit_webrtc import webrtc_streamer, WebRtcMode
import av
import numpy as np
import onnxruntime as rt
import threading
import mediapipe as mp
import os
from twilio.rest import Client
import cv2
from skimage.transform import SimilarityTransform
from types import SimpleNamespace
from sklearn.metrics.pairwise import cosine_distances
class Detection(SimpleNamespace):
bbox: List[List[float]] = None
landmarks: List[List[float]] = None
class Identity(SimpleNamespace):
detection: Detection = Detection()
name: str = None
embedding: np.ndarray = None
face: np.ndarray = None
class Match(SimpleNamespace):
subject_id: Identity = Identity()
gallery_id: Identity = Identity()
distance: float = None
name: str = None
class Grabber(object):
def __init__(self, video_receiver) -> None:
self.currentFrame = None
self.capture = video_receiver
self.thread = threading.Thread(target=self.update_frame)
self.thread.daemon = True
def update_frame(self) -> None:
while True:
self.currentFrame = self.capture.get_frame()
def get_frame(self) -> av.VideoFrame:
return self.currentFrame
# Similarity threshold for face matching
SIMILARITY_THRESHOLD = 1.2
# Get twilio ice server configuration using twilio credentials from environment variables (set in streamlit secrets)
# Ref: https://www.twilio.com/docs/stun-turn/api
client = Client(os.environ["TWILIO_ACCOUNT_SID"], os.environ["TWILIO_AUTH_TOKEN"])
token = client.tokens.create()
ICE_SERVERS = token.ice_servers
# Set page layout for streamlit to wide
st.set_page_config(layout="wide", page_title="Live Face Recognition", page_icon=":sunglasses:")
# Streamlit app
st.title("Live Webcam Face Recognition")
st.markdown("**Live Stream**")
ctx_container = st.container()
stream_container = st.empty()
st.markdown("**Matches**")
matches_container = st.info("No matches found yet ...")
st.markdown("**Info**")
info_container = st.empty()
# Init face detector and face recognizer
face_recognizer = rt.InferenceSession("model.fixed.onnx", providers=rt.get_available_providers())
face_detector = mp.solutions.face_mesh.FaceMesh(
refine_landmarks=True,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
max_num_faces=5,
)
def detect_faces(frame: np.ndarray) -> List[Detection]:
# Process the frame with the face detector
result = face_detector.process(frame)
# Initialize an empty list to store the detected faces
detections = []
# Check if any faces were detected
if result.multi_face_landmarks:
# Iterate over each detected face
for count, detection in enumerate(result.multi_face_landmarks):
# Select 5 Landmarks
five_landmarks = np.asarray(detection.landmark)[[470, 475, 1, 57, 287]]
# Extract the x and y coordinates of the landmarks of interest
landmarks = [[landmark.x * frame.shape[1], landmark.y * frame.shape[0]] for landmark in five_landmarks]
# Extract the x and y coordinates of all landmarks
all_x_coords = [landmark.x * frame.shape[1] for landmark in detection.landmark]
all_y_coords = [landmark.y * frame.shape[0] for landmark in detection.landmark]
# Compute the bounding box of the face
x_min, x_max = int(min(all_x_coords)), int(max(all_x_coords))
y_min, y_max = int(min(all_y_coords)), int(max(all_y_coords))
bbox = [[x_min, y_min], [x_max, y_max]]
# Create a Detection object for the face
detection = Detection(
idx=count,
bbox=bbox,
landmarks=landmarks,
confidence=None,
)
# Add the detection to the list
detections.append(detection)
# Return the list of detections
return detections
def recognize_faces(frame: np.ndarray, detections: List[Detection]) -> List[Identity]:
if not detections:
return []
identities = []
for detection in detections:
# ALIGNMENT -----------------------------------------------------------
# Target landmark coordinates (as used in training)
landmarks_target = np.array(
[
[38.2946, 51.6963],
[73.5318, 51.5014],
[56.0252, 71.7366],
[41.5493, 92.3655],
[70.7299, 92.2041],
],
dtype=np.float32,
)
tform = SimilarityTransform()
tform.estimate(detection.landmarks, landmarks_target)
tmatrix = tform.params[0:2, :]
face_aligned = cv2.warpAffine(frame, tmatrix, (112, 112), borderValue=0.0)
# ---------------------------------------------------------------------
# INFERENCE -----------------------------------------------------------
# Inference face embeddings with onnxruntime
input_image = (np.asarray([face_aligned]).astype(np.float32) / 255.0).clip(0.0, 1.0)
embedding = face_recognizer.run(None, {"input_image": input_image})[0][0]
# ---------------------------------------------------------------------
# Create Identity object
identities.append(Identity(detection=detection, embedding=embedding, face=face_aligned))
return identities
def match_faces(subjects: List[Identity], gallery: List[Identity]) -> List[Match]:
if len(gallery) == 0 or len(subjects) == 0:
return []
# Get Embeddings
embs_gal = np.asarray([identity.embedding for identity in gallery])
embs_det = np.asarray([identity.embedding for identity in subjects])
# Calculate Cosine Distances
cos_distances = cosine_distances(embs_det, embs_gal)
# Find Matches
matches = []
for ident_idx, identity in enumerate(subjects):
dists_to_identity = cos_distances[ident_idx]
idx_min = np.argmin(dists_to_identity)
if dists_to_identity[idx_min] < SIMILARITY_THRESHOLD:
matches.append(
Match(
subject_id=identity,
gallery_id=gallery[idx_min],
distance=dists_to_identity[idx_min],
)
)
# Sort Matches by identity_idx
matches = sorted(matches, key=lambda match: match.gallery_id.name)
return matches
def draw_annotations(frame: np.ndarray, detections: List[Detection], matches: List[Match]) -> np.ndarray:
global timestamp
shape = np.asarray(frame.shape[:2][::-1])
# Upscale frame to 1080p for better visualization of drawn annotations
frame = cv2.resize(frame, (1920, 1080))
upscale_factor = np.asarray([1920 / shape[0], 1080 / shape[1]])
shape = np.asarray(frame.shape[:2][::-1])
# Make frame writeable (for better performance)
frame.flags.writeable = True
fps = 1 / (time.time() - timestamp)
timestamp = time.time()
# Draw FPS
cv2.putText(
frame,
f"FPS: {fps:.1f}",
(20, 40),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
)
# Draw Detections
for detection in detections:
# Draw Landmarks
for landmark in detection.landmarks:
cv2.circle(
frame,
(landmark * upscale_factor).astype(int),
2,
(255, 255, 255),
-1,
)
# Draw Bounding Box
cv2.rectangle(
frame,
(detection.bbox[0] * upscale_factor).astype(int),
(detection.bbox[1] * upscale_factor).astype(int),
(255, 0, 0),
2,
)
# Draw Index
cv2.putText(
frame,
str(detection.idx),
(
((detection.bbox[1][0] + 2) * upscale_factor[0]).astype(int),
((detection.bbox[1][1] + 2) * upscale_factor[1]).astype(int),
),
cv2.LINE_AA,
0.5,
(0, 0, 0),
2,
)
# Draw Matches
for match in matches:
detection = match.subject_id.detection
name = match.gallery_id.name
# Draw Bounding Box in green
cv2.rectangle(
frame,
(detection.bbox[0] * upscale_factor).astype(int),
(detection.bbox[1] * upscale_factor).astype(int),
(0, 255, 0),
2,
)
# Draw Banner
cv2.rectangle(
frame,
(
(detection.bbox[0][0] * upscale_factor[0]).astype(int),
(detection.bbox[0][1] * upscale_factor[1] - (shape[1] // 25)).astype(int),
),
(
(detection.bbox[1][0] * upscale_factor[0]).astype(int),
(detection.bbox[0][1] * upscale_factor[1]).astype(int),
),
(255, 255, 255),
-1,
)
# Draw Name
cv2.putText(
frame,
name,
(
((detection.bbox[0][0] + shape[0] // 400) * upscale_factor[0]).astype(int),
((detection.bbox[0][1] - shape[1] // 50) * upscale_factor[1]).astype(int),
),
cv2.LINE_AA,
0.7,
(0, 0, 0),
2,
)
# Draw Distance
cv2.putText(
frame,
f" Distance: {match.distance:.2f}",
(
((detection.bbox[0][0] + shape[0] // 400) * upscale_factor[0]).astype(int),
((detection.bbox[0][1] - shape[1] // 350) * upscale_factor[1]).astype(int),
),
cv2.LINE_AA,
0.5,
(0, 0, 0),
2,
)
return frame
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
# Convert frame to numpy array
frame = frame.to_ndarray(format="rgb24")
# Run face detection
detections = detect_faces(frame)
# Run face recognition
subjects = recognize_faces(frame, detections)
# Run face matching
matches = match_faces(subjects, gallery)
# Draw annotations
frame = draw_annotations(frame, detections, matches)
# Convert frame back to av.VideoFrame
frame = av.VideoFrame.from_ndarray(frame, format="rgb24")
return frame, matches
# Sidebar for face gallery
with st.sidebar:
st.markdown("# Face Gallery")
files = st.sidebar.file_uploader(
"Upload images to gallery",
type=["png", "jpg", "jpeg"],
accept_multiple_files=True,
label_visibility="collapsed",
)
# Init gallery
gallery = []
for file in files:
# Read file bytes
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
# Decode image and convert from BGR to RGB
img = cv2.cvtColor(cv2.imdecode(file_bytes, cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
# Detect faces
detections = detect_faces(img)
if detections:
# recognize faces
subjects = recognize_faces(img, detections[:1])
# Add subjects to gallery
gallery.append(
Identity(
name=os.path.splitext(file.name)[0],
embedding=subjects[0].embedding,
face=subjects[0].face,
)
)
# Show gallery images
st.image(
image=[identity.face for identity in gallery],
caption=[identity.name for identity in gallery],
)
# Start streaming component
with ctx_container:
ctx = webrtc_streamer(
key="LiveFaceRecognition",
mode=WebRtcMode.SENDONLY,
rtc_configuration={"iceServers": ICE_SERVERS},
media_stream_constraints={"video": {"width": 1920}, "audio": False},
)
# Initialize frame grabber
grabber = Grabber(ctx.video_receiver)
if ctx.state.playing:
# Start frame grabber in background thread
grabber.thread.start()
timestamp = time.time()
# Start main loop
while True:
frame = grabber.get_frame()
if frame is not None:
# Print frame timestamp to streamlit
info_container.write(f"Frame timestamp: {frame.time}")
# Run face detection and recognition
frame, matches = video_frame_callback(frame)
# Convert frame to numpy array
frame = frame.to_ndarray(format="rgb24")
# Show Stream
stream_container.image(frame, channels="RGB")
# Show Matches
if matches:
matches_container.image(
image=[match.subject_id.face for match in matches],
caption=[match.gallery_id.name for match in matches],
)
else:
matches_container.info("No matches found yet ...")
|