File size: 2,058 Bytes
f84e083
caa64e7
f84e083
 
 
9441c54
0f34bf3
f84e083
 
 
9441c54
f84e083
 
 
 
 
 
e40242b
9441c54
f84e083
 
 
 
 
 
 
 
 
 
 
9441c54
f84e083
9441c54
 
 
 
 
 
 
 
 
 
 
 
d0c61b6
215f4a9
9441c54
215f4a9
d0c61b6
f84e083
 
 
9441c54
 
d0c61b6
9441c54
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from huggingface_hub import InferenceClient
import uvicorn
from typing import Generator
import json  # Asegúrate de que esta línea esté al principio del archivo

app = FastAPI()

# Initialize the InferenceClient with your model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

class Item(BaseModel):
    prompt: str
    history: list
    system_prompt: str
    temperature: float = 0.8
    max_new_tokens: int = 9000
    top_p: float = 0.15
    repetition_penalty: float = 1.0

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate_stream(item: Item) -> Generator[bytes, None, None]:
    formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history)
    generate_kwargs = {
        "temperature": item.temperature,
        "max_new_tokens": item.max_new_tokens,
        "top_p": item.top_p,
        "repetition_penalty": item.repetition_penalty,
        "do_sample": True,
        "seed": 42,  # Adjust or omit the seed as needed
    }

    # Stream the response from the InferenceClient
    for response in client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True):
        # This assumes 'details=True' gives you a structure where you can access the text like this
        chunk = {
            "text": response.token.text,
            "complete": response.generated_text is not None  # Adjust based on how you detect completion
        }
        yield json.dumps(chunk).encode("utf-8") + b"\n"

@app.post("/generate/")
async def generate_text(item: Item):
    # Stream response back to the client
    return StreamingResponse(generate_stream(item), media_type="application/x-ndjson")

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)