File size: 2,501 Bytes
d7ca2e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import datasets
import evaluate
from evaluate import evaluator, Metric
# from evaluate.metrics.f1 import F1
from sklearn.metrics import f1_score
# could in principle subclass F1, but ideally we can work the fix into the F1 class to maintain SOLID code
class FixedF1(evaluate.Metric):
def __init__(self, average="binary"):
super().__init__()
self.average = average
# additional values passed to compute() could and probably should (?) all be passed here so that the final computation is configured immediately at Metric instantiation
def _info(self):
return evaluate.MetricInfo(
description="Custom built F1 metric for true *multilabel* classification - the 'multilabel' config_name var in the evaluate.EvaluationModules class appears to better address multi-class classification, where features can fall under a multitude of labels. Granted, the subtely is minimal and easily confused. This class is implemented with the intention of enabling the evaluation of multiple multilabel classification metrics at the same time using the evaluate.CombinedEvaluations.combine method.",
citation="",
inputs_description="'average': This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Options include: {‘micro’, ‘macro’, ‘samples’, ‘weighted’, ‘binary’} or None.",
features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32")),
"references": datasets.Sequence(datasets.Value("int32")),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32"),
"references": datasets.Value("int32"),
}
),
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"],
)
# could remove specific kwargs like average, sample_weight from _compute() method of F1
def _compute(self, predictions, references, labels=None, pos_label=1, average="binary", sample_weight=None):
score = f1_score(
references, predictions, labels=labels, pos_label=pos_label, average=self.average, sample_weight=sample_weight
)
return {"f1": float(score) if score.size == 1 else score} |