Spaces:
Runtime error
Runtime error
File size: 15,442 Bytes
1e5acec 54f9fc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import numpy as np
import cv2
import torch
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import os
import shutil
from absl import logging
import sys
from pathlib import Path
from tqdm import tqdm
from omegaconf import OmegaConf
from torch.utils.data import DataLoader, DistributedSampler
import datetime
import os.path as osp
import torch.distributed as dist
import builtins
import accelerate
import wandb
import re
from diffusers.training_utils import EMAModel
from rich import print
def get_obj_from_str(string, reload=False):
import importlib
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def tensor_detail(t):
assert type(t) == torch.Tensor
print(f"shape: {t.shape} mean: {t.mean():.2f}, std: {t.std():.2f}, min: {t.min():.2f}, max: {t.max():.2f}")
def instantiate_from_config(config):
if not "target" in config:
raise KeyError("Expected key `target` to instantiate.")
model = get_obj_from_str(config["target"])(**config.get("params", dict()))
if config.get("resume", False):
print(f"resume from: {config.get('resume')}")
if os.path.isfile(config.get("resume")):
model.load_state_dict(torch.load(config["resume"], map_location="cpu"))
elif os.path.isdir(config.get("resume")) and hasattr(model, "from_pretrained"):
model.from_pretrained(config.get("resume"))
else:
raise Exception("could not resume")
return model
def set_logger(log_level='info', fname=None):
import logging as _logging
handler = logging.get_absl_handler()
formatter = _logging.Formatter('%(asctime)s - %(filename)s - %(message)s')
handler.setFormatter(formatter)
logging.set_verbosity(log_level)
if fname is not None:
handler = _logging.FileHandler(fname)
handler.setFormatter(formatter)
logging.get_absl_logger().addHandler(handler)
def dct2str(dct):
return str({k: f'{v:.6g}' for k, v in dct.items()})
def copy_files_by_suffix(source_dir, target_dir, suffixes=[".py"], exclude_dirs=[]):
# Walk through the directory tree
for root, _, files in os.walk(source_dir):
if any(exclude_dir in root for exclude_dir in exclude_dirs):
continue
for file in files:
# Check if the file has one of the specified suffixes
if any(file.endswith(suffix) for suffix in suffixes):
# Construct the source and target paths
source_path = os.path.join(root, file)
relative_path = os.path.relpath(source_path, source_dir)
target_path = os.path.join(target_dir, relative_path)
# Ensure the target directory exists
os.makedirs(os.path.dirname(target_path), exist_ok=True)
# Copy the file
shutil.copyfile(source_path, target_path)
def find_latest_step(regex, ckpt_root):
if not isinstance(regex, re.Pattern):
regex = re.compile(regex)
ints = []
for file in os.listdir(ckpt_root):
if re.match(regex, file):
ints.append(int(re.findall(r'\d+', file)[0]))
if len(ints) == 0:
raise FileNotFoundError(f"no file match {regex} in {ckpt_root}")
return max(ints)
def resume_from_workdir(config, accelerator, model_context, ema_context):
if config.get("resume", False):
with PrintContext(f"resume from {config.workdir}", accelerator.is_main_process):
for name in config.save_models:
max_step = find_latest_step(f"{name}-(\d+).pt", config.ckpt_root)
print(f"resume from {name}-{max_step}.pt")
model_context[name].load_state_dict(
torch.load(osp.join(config.ckpt_root, f"{name}-{max_step}.pt"),
map_location="cpu")
)
for k, ema in ema_context.items():
max_step = find_latest_step(f"{k}-ema-(\d+).pt", config.ckpt_root)
print(f"resume from {k}-ema-{max_step}.pt")
ema.load_state_dict(
torch.load(osp.join(config.ckpt_root, f"{k}-ema-{max_step}.pt"),
map_location="cpu")
)
ema.to(accelerator.device)
return max_step
else:
return 0
def get_model_context(models, device, dtype):
model_context = dict()
for key, model_config in models.items():
model = instantiate_from_config(model_config)
if hasattr(model, "device"):
try:
model.device = device
except Exception as e:
print(e)
print('passing set device')
if "t5" in type(model).__name__.lower() and isinstance(model, nn.Module):
# T5 model has a bug that it when using fp16
print(f"{'passing t5 model':-^72}")
model_context[key] = model.to(device)
continue
if isinstance(model, nn.Module):
model_context[key] = model.to(device=device, dtype=dtype)
else:
model_context[key] = model
model_context["device"] = device
model_context["dtype"] = dtype
return model_context
def get_ema_context(model_context, emas):
"""given config of ema models and model context, return an ema_context
contains all ema model in the current train process
Args:
model_context (dict): dict of names, point to pytroch models
emas (dict): dict of name, point to ema model, name was same with
"""
ema_context = dict()
if emas is None:
return ema_context
for ema_item in emas:
name = ema_item["name"]
ema_context[name] = EMAModel(model_context[name].parameters(), **ema_item.params)
return ema_context
def get_data_context(data, accelerator=None):
data_context = dict()
for key, data_config in data.items():
dataset = instantiate_from_config(data_config.dataset)
if data_config.get("distributed_sampler", False):
sampler_cls = get_obj_from_str(data_config.distributed_sampler.target)
distributed_sampler = sampler_cls(
dataset,
num_replicas=accelerator.num_processes if accelerator is not None else 1,
rank=accelerator.process_index if accelerator is not None else 0,
**data_config.distributed_sampler.params
)
dataloader = DataLoader(dataset, sampler=distributed_sampler, **data_config.dataloader)
else:
dataloader = DataLoader(dataset, **data_config.dataloader)
data_context[key] = dataloader
data_context[key + "_generator"] = get_data_generator(dataloader, accelerator.is_main_process if accelerator is not None else True, key)
data_context[key + "_dataset"] = dataset
return data_context
class Unimodel(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self._module_list = nn.ModuleList(*args)
for k, v in kwargs.items():
setattr(self, k, v)
def config_optimizer(model_context, optimizer_models, default_opt_params):
"""
model_context: dict of model instances
optimizer_models: list of dict, each dict contains model name and modules
default_opt_params: dict of default optimizer parameters
"""
default_opt_params = dict(default_opt_params)
param_groups = []
for model_config in optimizer_models:
model = model_context[model_config["name"]]
if model_config.get("modules", None) is None: # all model when no sub modules specified
model.requires_grad_(True)
print(f"using all modules of {model_config['name']}")
para_dict = default_opt_params.copy()
opt_params = model_config.get("opt_params", dict())
para_dict.update(opt_params)
para_dict["params"] = list(model.parameters())
param_groups.append(para_dict)
else:
model.requires_grad_(False)
for module_config in model_config["modules"]:
para_dict = default_opt_params.copy()
params = []
for name, param in model.named_parameters():
if module_config["name"] in name:
print(name)
param.requires_grad = True
params.append(param)
para_dict["params"] = params
opt_params = model_config.get("opt_params", dict())
para_dict.update(opt_params)
param_groups.append(para_dict)
return param_groups
def cnt_params(model):
return sum(param.numel() for param in model.parameters())
def get_hparams(input_args=None):
argv = sys.argv if input_args is None else input_args
lst = []
for i in range(len(argv)):
if argv[i].startswith('config.'):
hparam_full, val = argv[i].split('=')
hparam = hparam_full.split('.')[-1]
lst.append(f'{hparam}={val}')
hparams = '-'.join(lst)
if hparams == '':
hparams = 'default'
return hparams
def add_prefix(dct, prefix):
return {f'{prefix}/{key}': val for key, val in dct.items()}
def grad_norm(model):
total_norm = 0.
for p in model.parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
return total_norm
def param_norm(model):
total_norm = 0.
for p in model.parameters():
param_norm = p.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
return total_norm
class PrintContext(object):
def __init__(self, name, verbose=True):
self.name = name
self.verbose = verbose
def __enter__(self):
if self.verbose: print(f'{self.name} processing...')
def __exit__(self, exc_type, exc_val, exc_tb):
if self.verbose: print(f'{self.name} done')
def time_to_tensor(now: datetime.datetime):
return torch.tensor([now.year, now.month, now.day, now.hour, now.minute, now.second], dtype=torch.long)
def tensor_to_time(t: torch.Tensor):
return datetime.datetime(*t.tolist())
def setup(config, unk):
accelerator = accelerate.Accelerator(gradient_accumulation_steps=config.gradient_accumulation_steps)
device = accelerator.device
accelerate.utils.set_seed(config.seed, device_specific=True)
# sync time for all processes
g_handler = dist.new_group(backend='gloo')
now = time_to_tensor(datetime.datetime.now())
dist.broadcast(now, src=0, group=g_handler)
now = tensor_to_time(now).strftime("%Y-%m-%dT%H-%M-%S")
print("unknow args: ", unk, get_hparams(unk))
if config.get("workdir", None) is None:
config.workdir = osp.join(config.logdir, f"{config.config_name}-{get_hparams(unk)}-{now}")
print(f"{'workdir: ' + config.workdir:-^72}")
config.ckpt_root = osp.join(config.workdir, 'ckpts')
config.eval_root = osp.join(config.workdir, "eval")
config.eval_root2 = osp.join(config.workdir, "eval2")
if accelerator.is_main_process:
os.makedirs(config.workdir, exist_ok=True)
os.makedirs(config.ckpt_root, exist_ok=True)
os.makedirs(config.eval_root, exist_ok=True)
os.makedirs(config.eval_root2, exist_ok=True)
config.meta_dir = osp.join(config.workdir, f"meta-{now}")
copy_files_by_suffix(os.getcwd(), config.meta_dir, exclude_dirs=[config.logdir], suffixes=[".py", ".yaml"])
with open(osp.join(config.meta_dir, "config.yaml"), "w") as f:
f.write(OmegaConf.to_yaml(config))
wandb.init(dir=os.path.abspath(config.workdir), project=config.project, config=dict(config),
name=config.wandb_run_name, job_type='train', mode=config.wandb_mode, group="DDP")
if accelerator.is_main_process:
set_logger(log_level='info', fname=os.path.join(config.workdir, 'output.log'))
print(OmegaConf.to_yaml(config))
else:
set_logger(log_level='error')
builtins.print = lambda *args: None
assert not ('total_batch_size' in config and 'batch_size' in config)
if 'total_batch_size' not in config:
config.total_batch_size = config.batch_size * accelerator.num_processes
if 'batch_size' not in config:
assert config.total_batch_size % accelerator.num_processes == 0
config.batch_size = config.total_batch_size // accelerator.num_processes
if 'total_logical_batch_size' not in config:
config.total_logical_batch_size = config.total_batch_size * config.gradient_accumulation_steps
logging.info(f'Run on {accelerator.num_processes} devices')
return accelerator, device
def get_data_generator(loader, enable_tqdm, desc):
while True:
for data in tqdm(loader, disable=not enable_tqdm, desc=desc):
yield data
def do_resize_content(original_image: Image, scale_rate):
# resize image content wile retain the original image size
if scale_rate != 1:
# Calculate the new size after rescaling
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
# Resize the image while maintaining the aspect ratio
resized_image = original_image.resize(new_size)
# Create a new image with the original size and black background
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
padded_image.paste(resized_image, paste_position)
return padded_image
else:
return original_image
def add_stroke(img, color=(255, 255, 255), stroke_radius=3):
# color in R, G, B format
if isinstance(img, Image.Image):
assert img.mode == "RGBA"
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA)
else:
assert img.shape[2] == 4
gray = img[:,:, 3]
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
res = cv2.drawContours(img, contours,-1, tuple(color)[::-1] + (255,), stroke_radius)
return Image.fromarray(cv2.cvtColor(res,cv2.COLOR_BGRA2RGBA))
def make_blob(image_size=(512, 512), sigma=0.2):
"""
make 2D blob image with:
I(x, y)=1-\exp \left(-\frac{(x-H / 2)^2+(y-W / 2)^2}{2 \sigma^2 HS}\right)
"""
import numpy as np
H, W = image_size
x = np.arange(0, W, 1, float)
y = np.arange(0, H, 1, float)
x, y = np.meshgrid(x, y)
x0 = W // 2
y0 = H // 2
img = 1 - np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2 * H * W))
return (img * 255).astype(np.uint8) |