Spaces:
Runtime error
Runtime error
File size: 7,787 Bytes
3d7abcf d071597 3d7abcf d071597 8685a73 d071597 b838740 d071597 3d7abcf 8685a73 3d7abcf b838740 e04bd55 3d7abcf e04bd55 3d7abcf e04bd55 3d7abcf e04bd55 b3439f4 e04bd55 b3439f4 8685a73 b3439f4 8685a73 b3439f4 8685a73 3d7abcf b3439f4 e04bd55 b3439f4 e04bd55 b3439f4 e04bd55 b3439f4 e04bd55 b3439f4 e04bd55 11b003a e04bd55 b3439f4 3d7abcf e04bd55 d071597 e04bd55 d071597 a061418 b3439f4 e04bd55 b3439f4 e04bd55 d071597 e04bd55 d071597 b3439f4 3d7abcf e04bd55 3d7abcf d071597 3d7abcf e04bd55 3d7abcf d071597 3d7abcf e04bd55 b3439f4 e04bd55 3d7abcf b3439f4 3d7abcf 8685a73 3d7abcf b3439f4 d071597 3d7abcf b838740 e04bd55 b3439f4 e04bd55 b3439f4 e04bd55 b3439f4 8685a73 b3439f4 e04bd55 b3439f4 8685a73 0f1f754 554fea9 8685a73 e04bd55 b3439f4 3d7abcf b3439f4 3d7abcf d071597 8685a73 3d7abcf d071597 8685a73 e9f1e55 3d7abcf 8685a73 0c55f72 8685a73 3d7abcf 8685a73 d071597 3d7abcf 8685a73 3d7abcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import requests
import re
import pandas as pd
from huggingface_hub import ModelCard
import os
def pass_emoji(passed):
if passed is True:
passed = "โ
"
else:
passed = "โ"
return passed
api = HfApi()
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on"
HF_TOKEN = os.environ.get("HF_TOKEN")
def get_user_models(hf_username, task):
"""
List the user's models for a given task
:param hf_username: User HF username
"""
models = api.list_models(author=hf_username, filter=[task])
user_model_ids = [x.modelId for x in models]
match task:
case "audio-classification":
dataset = 'marsyas/gtzan'
case "automatic-speech-recognition":
dataset = 'PolyAI/minds14'
case "text-to-speech":
dataset = ""
case _:
print("Unsupported task")
dataset_specific_models = []
if dataset == "":
return user_model_ids
else:
for model in user_model_ids:
meta = get_metadata(model)
if meta is None:
continue
try:
if meta["datasets"] == [dataset]:
dataset_specific_models.append(model)
except:
continue
return dataset_specific_models
def calculate_best_result(user_models, task):
"""
Calculate the best results of a unit for a given task
:param user_model_ids: models of a user
"""
best_model = ""
if task == "audio-classification":
best_result = -100
larger_is_better = True
elif task == "automatic-speech-recognition":
best_result = 100
larger_is_better = False
for model in user_models:
meta = get_metadata(model)
if meta is None:
continue
metric = parse_metrics(model, task)
if metric == None:
continue
if larger_is_better:
if metric > best_result:
best_result = metric
best_model = meta['model-index'][0]["name"]
else:
if metric < best_result:
best_result = metric
best_model = meta['model-index'][0]["name"]
return best_result, best_model
def get_metadata(model_id):
"""
Get model metadata (contains evaluation data)
:param model_id
"""
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def extract_metric(model_card_content, task):
"""
Extract the metric value from the models' model card
:param model_card_content: model card content
"""
accuracy_pattern = r"(?:Accuracy|eval_accuracy): (\d+\.\d+)"
wer_pattern = r"Wer: (\d+\.\d+)"
if task == "audio-classification":
pattern = accuracy_pattern
elif task == "automatic-speech-recognition":
pattern = wer_pattern
match = re.search(pattern, model_card_content)
if match:
metric = match.group(1)
return float(metric)
else:
return None
def parse_metrics(model, task):
"""
Get model card and parse it
:param model_id: model id
"""
card = ModelCard.load(model)
return extract_metric(card.content, task)
def certification(hf_username):
results_certification = [
{
"unit": "Unit 4: Audio Classification",
"task": "audio-classification",
"baseline_metric": 0.87,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 5: Automatic Speech Recognition",
"task": "automatic-speech-recognition",
"baseline_metric": 0.37,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 6: Text-to-Speech",
"task": "text-to-speech",
"baseline_metric": 0,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
{
"unit": "Unit 7: Audio applications",
"task": "demo",
"baseline_metric": 0,
"best_result": 0,
"best_model_id": "",
"passed_": False
},
]
for unit in results_certification:
unit["passed"] = pass_emoji(unit["passed_"])
match unit["task"]:
case "audio-classification":
try:
user_ac_models = get_user_models(hf_username, task = "audio-classification")
best_result, best_model_id = calculate_best_result(user_ac_models, task = "audio-classification")
unit["best_result"] = best_result
unit["best_model_id"] = best_model_id
if unit["best_result"] >= unit["baseline_metric"]:
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
except: print("Either no relevant models found, or no metrics in the model card for audio classificaiton")
case "automatic-speech-recognition":
try:
user_asr_models = get_user_models(hf_username, task = "automatic-speech-recognition")
best_result, best_model_id = calculate_best_result(user_asr_models, task = "automatic-speech-recognition")
unit["best_result"] = best_result
unit["best_model_id"] = best_model_id
if unit["best_result"] <= unit["baseline_metric"]:
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
case "text-to-speech":
try:
user_tts_models = get_user_models(hf_username, task = "text-to-speech")
if user_tts_models:
unit["best_result"] = 0
unit["best_model_id"] = user_tts_models[0]
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
case "demo":
u7_usernames = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN)
u7_users = pd.read_csv(u7_usernames)
if hf_username in u7_users['username'].tolist():
unit["best_result"] = 0
unit["best_model_id"] = "Demo check passed, no model id"
unit["passed_"] = True
unit["passed"] = pass_emoji(unit["passed_"])
case _:
print("Unknown task")
print(results_certification)
df = pd.DataFrame(results_certification)
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
return df
with gr.Blocks() as demo:
gr.Markdown(f"""
# ๐ Check your progress in the Audio Course ๐
- To get a certificate of completion, you must **pass 3 out of 4 assignments**.
- To get an honors certificate, you must **pass 4 out of 4 assignments**.
For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric.
For the Unit 7 assignment, first, check your demo with the [Unit 7 assessment space](https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment)
Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public.
To check your progress, type your Hugging Face Username here (in my case MariaK)
""")
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
check_progress_button = gr.Button(value="Check my progress")
output = gr.components.Dataframe(value=certification(hf_username))
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
demo.launch() |