File size: 548 Bytes
fd925f9
eccc5b3
fd925f9
 
eccc5b3
 
b742362
eccc5b3
fd925f9
 
 
eccc5b3
fd925f9
eccc5b3
 
bc3c3e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import gradio as gr

from transformers import pipeline

pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")

def get_sentiment(input_text):
    return pipe(input_text)[0]["label"]
    
iface = gr.Interface(fn = get_sentiment,
                     inputs = "text",
                     outputs = 'text',
                     title= 'Sentiment Analysis',
                     description = 'Get Sentiment Negative/Positive/Neutral for the given input')
                     
iface.launch(enable_queue=True)