File size: 5,053 Bytes
d6ee06c
 
 
 
 
f83815f
d6ee06c
 
 
 
f83815f
d6ee06c
 
f83815f
d6ee06c
 
 
 
 
f83815f
d6ee06c
 
 
 
 
 
 
 
 
 
 
 
 
 
f83815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d409ca
 
f83815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6ee06c
f83815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6ee06c
 
 
f83815f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6ee06c
 
 
 
 
 
 
 
 
 
 
 
f83815f
d6ee06c
 
 
f83815f
 
d6ee06c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os

from setuptools import find_packages, setup

# Package metadata
NAME = "SAM-2"
VERSION = "1.0"
DESCRIPTION = "SAM 2: Segment Anything in Images and Videos"
URL = "https://github.com/facebookresearch/sam2"
AUTHOR = "Meta AI"
AUTHOR_EMAIL = "segment-anything@meta.com"
LICENSE = "Apache 2.0"

# Read the contents of README file
with open("README.md", "r", encoding="utf-8") as f:
    LONG_DESCRIPTION = f.read()

# Required dependencies
REQUIRED_PACKAGES = [
    "torch>=2.3.1",
    "torchvision>=0.18.1",
    "numpy>=1.24.4",
    "tqdm>=4.66.1",
    "hydra-core>=1.3.2",
    "iopath>=0.1.10",
    "pillow>=9.4.0",
]

EXTRA_PACKAGES = {
    "notebooks": [
        "matplotlib>=3.9.1",
        "jupyter>=1.0.0",
        "opencv-python>=4.7.0",
        "eva-decord>=0.6.1",
    ],
    "interactive-demo": [
        "Flask>=3.0.3",
        "Flask-Cors>=5.0.0",
        "av>=13.0.0",
        "dataclasses-json>=0.6.7",
        "eva-decord>=0.6.1",
        "gunicorn>=23.0.0",
        "imagesize>=1.4.1",
        "pycocotools>=2.0.8",
        "strawberry-graphql>=0.239.2",
    ],
    "dev": [
        "black==24.2.0",
        "usort==1.0.2",
        "ufmt==2.0.0b2",
        "fvcore>=0.1.5.post20221221",
        "pandas>=2.2.2",
        "scikit-image>=0.24.0",
        "tensorboard>=2.17.0",
        "pycocotools>=2.0.8",
        "tensordict>=0.5.0",
        "opencv-python>=4.7.0",
        "submitit>=1.5.1",
    ],
}

# By default, we also build the SAM 2 CUDA extension.
# You may turn off CUDA build with `export SAM2_BUILD_CUDA=0`.
BUILD_CUDA = os.getenv("SAM2_BUILD_CUDA", "1") == "1"
# By default, we allow SAM 2 installation to proceed even with build errors.
# You may force stopping on errors with `export SAM2_BUILD_ALLOW_ERRORS=0`.
BUILD_ALLOW_ERRORS = os.getenv("SAM2_BUILD_ALLOW_ERRORS", "1") == "1"

# Catch and skip errors during extension building and print a warning message
# (note that this message only shows up under verbose build mode
# "pip install -v -e ." or "python setup.py build_ext -v")
CUDA_ERROR_MSG = (
    "{}\n\n"
    "Failed to build the SAM 2 CUDA extension due to the error above. "
    "You can still use SAM 2 and it's OK to ignore the error above, although some "
    "post-processing functionality may be limited (which doesn't affect the results in most cases; "
    "(see https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).\n"
)


def get_extensions():
    if not BUILD_CUDA:
        return []

    try:
        from torch.utils.cpp_extension import CUDAExtension

        srcs = ["sam2/csrc/connected_components.cu"]
        compile_args = {
            "cxx": [],
            "nvcc": [
                "-DCUDA_HAS_FP16=1",
                "-D__CUDA_NO_HALF_OPERATORS__",
                "-D__CUDA_NO_HALF_CONVERSIONS__",
                "-D__CUDA_NO_HALF2_OPERATORS__",
            ],
        }
        ext_modules = [CUDAExtension("sam2._C", srcs, extra_compile_args=compile_args)]
    except Exception as e:
        if BUILD_ALLOW_ERRORS:
            print(CUDA_ERROR_MSG.format(e))
            ext_modules = []
        else:
            raise e

    return ext_modules


try:
    from torch.utils.cpp_extension import BuildExtension

    class BuildExtensionIgnoreErrors(BuildExtension):

        def finalize_options(self):
            try:
                super().finalize_options()
            except Exception as e:
                print(CUDA_ERROR_MSG.format(e))
                self.extensions = []

        def build_extensions(self):
            try:
                super().build_extensions()
            except Exception as e:
                print(CUDA_ERROR_MSG.format(e))
                self.extensions = []

        def get_ext_filename(self, ext_name):
            try:
                return super().get_ext_filename(ext_name)
            except Exception as e:
                print(CUDA_ERROR_MSG.format(e))
                self.extensions = []
                return "_C.so"

    cmdclass = {
        "build_ext": (
            BuildExtensionIgnoreErrors.with_options(no_python_abi_suffix=True)
            if BUILD_ALLOW_ERRORS
            else BuildExtension.with_options(no_python_abi_suffix=True)
        )
    }
except Exception as e:
    cmdclass = {}
    if BUILD_ALLOW_ERRORS:
        print(CUDA_ERROR_MSG.format(e))
    else:
        raise e


# Setup configuration
setup(
    name=NAME,
    version=VERSION,
    description=DESCRIPTION,
    long_description=LONG_DESCRIPTION,
    long_description_content_type="text/markdown",
    url=URL,
    author=AUTHOR,
    author_email=AUTHOR_EMAIL,
    license=LICENSE,
    packages=find_packages(exclude="notebooks"),
    include_package_data=True,
    install_requires=REQUIRED_PACKAGES,
    extras_require=EXTRA_PACKAGES,
    python_requires=">=3.10.0",
    # ext_modules=get_extensions(),
    cmdclass=cmdclass,
)