Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,053 Bytes
d6ee06c f83815f d6ee06c f83815f d6ee06c f83815f d6ee06c f83815f d6ee06c f83815f 5d409ca f83815f d6ee06c f83815f d6ee06c f83815f d6ee06c f83815f d6ee06c f83815f d6ee06c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
from setuptools import find_packages, setup
# Package metadata
NAME = "SAM-2"
VERSION = "1.0"
DESCRIPTION = "SAM 2: Segment Anything in Images and Videos"
URL = "https://github.com/facebookresearch/sam2"
AUTHOR = "Meta AI"
AUTHOR_EMAIL = "segment-anything@meta.com"
LICENSE = "Apache 2.0"
# Read the contents of README file
with open("README.md", "r", encoding="utf-8") as f:
LONG_DESCRIPTION = f.read()
# Required dependencies
REQUIRED_PACKAGES = [
"torch>=2.3.1",
"torchvision>=0.18.1",
"numpy>=1.24.4",
"tqdm>=4.66.1",
"hydra-core>=1.3.2",
"iopath>=0.1.10",
"pillow>=9.4.0",
]
EXTRA_PACKAGES = {
"notebooks": [
"matplotlib>=3.9.1",
"jupyter>=1.0.0",
"opencv-python>=4.7.0",
"eva-decord>=0.6.1",
],
"interactive-demo": [
"Flask>=3.0.3",
"Flask-Cors>=5.0.0",
"av>=13.0.0",
"dataclasses-json>=0.6.7",
"eva-decord>=0.6.1",
"gunicorn>=23.0.0",
"imagesize>=1.4.1",
"pycocotools>=2.0.8",
"strawberry-graphql>=0.239.2",
],
"dev": [
"black==24.2.0",
"usort==1.0.2",
"ufmt==2.0.0b2",
"fvcore>=0.1.5.post20221221",
"pandas>=2.2.2",
"scikit-image>=0.24.0",
"tensorboard>=2.17.0",
"pycocotools>=2.0.8",
"tensordict>=0.5.0",
"opencv-python>=4.7.0",
"submitit>=1.5.1",
],
}
# By default, we also build the SAM 2 CUDA extension.
# You may turn off CUDA build with `export SAM2_BUILD_CUDA=0`.
BUILD_CUDA = os.getenv("SAM2_BUILD_CUDA", "1") == "1"
# By default, we allow SAM 2 installation to proceed even with build errors.
# You may force stopping on errors with `export SAM2_BUILD_ALLOW_ERRORS=0`.
BUILD_ALLOW_ERRORS = os.getenv("SAM2_BUILD_ALLOW_ERRORS", "1") == "1"
# Catch and skip errors during extension building and print a warning message
# (note that this message only shows up under verbose build mode
# "pip install -v -e ." or "python setup.py build_ext -v")
CUDA_ERROR_MSG = (
"{}\n\n"
"Failed to build the SAM 2 CUDA extension due to the error above. "
"You can still use SAM 2 and it's OK to ignore the error above, although some "
"post-processing functionality may be limited (which doesn't affect the results in most cases; "
"(see https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).\n"
)
def get_extensions():
if not BUILD_CUDA:
return []
try:
from torch.utils.cpp_extension import CUDAExtension
srcs = ["sam2/csrc/connected_components.cu"]
compile_args = {
"cxx": [],
"nvcc": [
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
],
}
ext_modules = [CUDAExtension("sam2._C", srcs, extra_compile_args=compile_args)]
except Exception as e:
if BUILD_ALLOW_ERRORS:
print(CUDA_ERROR_MSG.format(e))
ext_modules = []
else:
raise e
return ext_modules
try:
from torch.utils.cpp_extension import BuildExtension
class BuildExtensionIgnoreErrors(BuildExtension):
def finalize_options(self):
try:
super().finalize_options()
except Exception as e:
print(CUDA_ERROR_MSG.format(e))
self.extensions = []
def build_extensions(self):
try:
super().build_extensions()
except Exception as e:
print(CUDA_ERROR_MSG.format(e))
self.extensions = []
def get_ext_filename(self, ext_name):
try:
return super().get_ext_filename(ext_name)
except Exception as e:
print(CUDA_ERROR_MSG.format(e))
self.extensions = []
return "_C.so"
cmdclass = {
"build_ext": (
BuildExtensionIgnoreErrors.with_options(no_python_abi_suffix=True)
if BUILD_ALLOW_ERRORS
else BuildExtension.with_options(no_python_abi_suffix=True)
)
}
except Exception as e:
cmdclass = {}
if BUILD_ALLOW_ERRORS:
print(CUDA_ERROR_MSG.format(e))
else:
raise e
# Setup configuration
setup(
name=NAME,
version=VERSION,
description=DESCRIPTION,
long_description=LONG_DESCRIPTION,
long_description_content_type="text/markdown",
url=URL,
author=AUTHOR,
author_email=AUTHOR_EMAIL,
license=LICENSE,
packages=find_packages(exclude="notebooks"),
include_package_data=True,
install_requires=REQUIRED_PACKAGES,
extras_require=EXTRA_PACKAGES,
python_requires=">=3.10.0",
# ext_modules=get_extensions(),
cmdclass=cmdclass,
)
|