Spaces:
Runtime error
Runtime error
File size: 9,622 Bytes
dfde69d 9722d74 25aea79 dfde69d 9722d74 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 1d3dde2 dfde69d 9722d74 1d3dde2 9722d74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
#!/usr/bin/env python
# encoding: utf-8
import spaces
import gradio as gr
from PIL import Image
import traceback
import re
import torch
import argparse
from transformers import AutoModel, AutoTokenizer
# README, How to run demo on different devices
# For Nvidia GPUs.
# python web_demo_2.5.py --device cuda
# For Mac with MPS (Apple silicon or AMD GPUs).
# PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.5.py --device mps
# Argparser
parser = argparse.ArgumentParser(description='demo')
parser.add_argument('--device', type=str, default='cuda', help='cuda or mps')
args = parser.parse_args()
device = args.device
assert device in ['cuda', 'mps']
# Load model
model_path = 'openbmb/MiniCPM-Llama3-V-2_5'
if 'int4' in model_path:
if device == 'mps':
print('Error: running int4 model with bitsandbytes on Mac is not supported right now.')
exit()
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.float16)
model = model.to(device=device)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model.eval()
ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-Llama3-V 2.5'
form_radio = {
'choices': ['Beam Search', 'Sampling'],
#'value': 'Beam Search',
'value': 'Sampling',
'interactive': True,
'label': 'Decode Type'
}
# Beam Form
num_beams_slider = {
'minimum': 0,
'maximum': 5,
'value': 3,
'step': 1,
'interactive': True,
'label': 'Num Beams'
}
repetition_penalty_slider = {
'minimum': 0,
'maximum': 3,
'value': 1.2,
'step': 0.01,
'interactive': True,
'label': 'Repetition Penalty'
}
repetition_penalty_slider2 = {
'minimum': 0,
'maximum': 3,
'value': 1.05,
'step': 0.01,
'interactive': True,
'label': 'Repetition Penalty'
}
max_new_tokens_slider = {
'minimum': 1,
'maximum': 4096,
'value': 1024,
'step': 1,
'interactive': True,
'label': 'Max New Tokens'
}
top_p_slider = {
'minimum': 0,
'maximum': 1,
'value': 0.8,
'step': 0.05,
'interactive': True,
'label': 'Top P'
}
top_k_slider = {
'minimum': 0,
'maximum': 200,
'value': 100,
'step': 1,
'interactive': True,
'label': 'Top K'
}
temperature_slider = {
'minimum': 0,
'maximum': 2,
'value': 0.7,
'step': 0.05,
'interactive': True,
'label': 'Temperature'
}
def create_component(params, comp='Slider'):
if comp == 'Slider':
return gr.Slider(
minimum=params['minimum'],
maximum=params['maximum'],
value=params['value'],
step=params['step'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Radio':
return gr.Radio(
choices=params['choices'],
value=params['value'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Button':
return gr.Button(
value=params['value'],
interactive=True
)
@spaces.GPU(duration=120)
def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
default_params = {"stream": False, "sampling": False, "num_beams":3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
if params is None:
params = default_params
if img is None:
yield "Error, invalid image, please upload a new image"
else:
try:
image = img.convert('RGB')
answer = model.chat(
image=image,
msgs=msgs,
tokenizer=tokenizer,
**params
)
# if params['stream'] is False:
# res = re.sub(r'(<box>.*</box>)', '', answer)
# res = res.replace('<ref>', '')
# res = res.replace('</ref>', '')
# res = res.replace('<box>', '')
# answer = res.replace('</box>', '')
# else:
for char in answer:
yield char
except Exception as err:
print(err)
traceback.print_exc()
yield ERROR_MSG
def upload_img(image, _chatbot, _app_session):
image = Image.fromarray(image)
_app_session['sts']=None
_app_session['ctx']=[]
_app_session['img']=image
_chatbot.append(('', 'Image uploaded successfully, you can talk to me now'))
return _chatbot, _app_session
def respond(_chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
_question = _chat_bot[-1][0]
print('<Question>:', _question)
if _app_cfg.get('ctx', None) is None:
_chat_bot[-1][1] = 'Please upload an image to start'
yield (_chat_bot, _app_cfg)
else:
_context = _app_cfg['ctx'].copy()
if _context:
_context.append({"role": "user", "content": _question})
else:
_context = [{"role": "user", "content": _question}]
if params_form == 'Beam Search':
params = {
'sampling': False,
'stream': False,
'num_beams': num_beams,
'repetition_penalty': repetition_penalty,
"max_new_tokens": 896
}
else:
params = {
'sampling': True,
'stream': True,
'top_p': top_p,
'top_k': top_k,
'temperature': temperature,
'repetition_penalty': repetition_penalty_2,
"max_new_tokens": 896
}
gen = chat(_app_cfg['img'], _context, None, params)
_chat_bot[-1][1] = ""
for _char in gen:
_chat_bot[-1][1] += _char
_context[-1]["content"] += _char
yield (_chat_bot, _app_cfg)
def request(_question, _chat_bot, _app_cfg):
_chat_bot.append((_question, None))
return '', _chat_bot, _app_cfg
def regenerate_button_clicked(_question, _chat_bot, _app_cfg):
if len(_chat_bot) <= 1:
_chat_bot.append(('Regenerate', 'No question for regeneration.'))
return '', _chat_bot, _app_cfg
elif _chat_bot[-1][0] == 'Regenerate':
return '', _chat_bot, _app_cfg
else:
_question = _chat_bot[-1][0]
_chat_bot = _chat_bot[:-1]
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
return request(_question, _chat_bot, _app_cfg)
# return respond(_chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)
def clear_button_clicked(_question, _chat_bot, _app_cfg, _bt_pic):
_chat_bot.clear()
_app_cfg['sts'] = None
_app_cfg['ctx'] = None
_app_cfg['img'] = None
_bt_pic = None
return '', _chat_bot, _app_cfg, _bt_pic
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1, min_width=300):
params_form = create_component(form_radio, comp='Radio')
with gr.Accordion("Beam Search") as beams_according:
num_beams = create_component(num_beams_slider)
repetition_penalty = create_component(repetition_penalty_slider)
with gr.Accordion("Sampling") as sampling_according:
top_p = create_component(top_p_slider)
top_k = create_component(top_k_slider)
temperature = create_component(temperature_slider)
repetition_penalty_2 = create_component(repetition_penalty_slider2)
regenerate = create_component({'value': 'Regenerate'}, comp='Button')
clear = create_component({'value': 'Clear'}, comp='Button')
with gr.Column(scale=3, min_width=500):
app_session = gr.State({'sts':None,'ctx':None,'img':None})
bt_pic = gr.Image(label="Upload an image to start")
chat_bot = gr.Chatbot(label=f"Chat with {model_name}")
txt_message = gr.Textbox(label="Input text")
clear.click(
clear_button_clicked,
[txt_message, chat_bot, app_session, bt_pic],
[txt_message, chat_bot, app_session, bt_pic],
queue=False
)
txt_message.submit(
request,
#[txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
[txt_message, chat_bot, app_session],
[txt_message, chat_bot, app_session],
queue=False
).then(
respond,
[chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
[chat_bot, app_session]
)
regenerate.click(
regenerate_button_clicked,
[txt_message, chat_bot, app_session],
[txt_message, chat_bot, app_session],
queue=False
).then(
respond,
[chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
[chat_bot, app_session]
)
bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic,chat_bot,app_session], outputs=[chat_bot,app_session])
# launch
#demo.launch(share=False, debug=True, show_api=False, server_port=8080, server_name="0.0.0.0")
demo.queue()
demo.launch()
|