Spaces:
Sleeping
Sleeping
File size: 23,486 Bytes
693faa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import os
import pathlib
import time
from textwrap import dedent
import regex as re
import unicodedata
import utilities
from src.base import Tokenizer, get_stats, merge
whitespace = ' \t\n\r\v\f'
ascii_lowercase = 'abcdefghijklmnopqrstuvwxyz'
ascii_uppercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ascii_letters = ascii_lowercase + ascii_uppercase
digits = '0123456789'
hexdigits = digits + 'abcdef' + 'ABCDEF'
octdigits = '01234567'
punctuation = r"""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""
ascii_printable = whitespace + ascii_letters + hexdigits + punctuation
# the main GPT text split patterns, see
# https://github.com/openai/tiktoken/blob/main/tiktoken_ext/openai_public.py
GPT2_SPLIT_PATTERN = r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
GPT4_SPLIT_PATTERN = r"""'(?i:[sdmt]|ll|ve|re)|[^\r\n\p{L}\p{N}]?+\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]++[\r\n]*|\s*[\r\n]|\s+(?!\S)|\s+"""
"""
Basic Devanagari: \u0900 to \u097F
Vedic Extensions: \u1CD0 to \u1CFF
Extended Devanagari: \uA8E0 to \uA8FF
"""
# ignore case in compile below
SIMPLE_HINDI_PATTERN = r"""[\t\n\r\f\v]?|[^\r\n\p{Devanagari}\p{N}]?+\p{Devanagari}+|\\p{N}{1,}| ?[^\s\p{Devanagari}+\p{N}]++[\r\n]*|\s*[\r\n]*|\s+(?!\S)|\s+"""
EXTENDED_HINDI_PATTERN = r"""[\t\n\r\f\v]?|[^\r\n\p{Devanagari}\uA8E0-\uA8FF\u1CD0-\u1CFF\p{N}]?+[\p{Devanagari}\uA8E0-\uA8FF\u1CD0-\u1CFF]+|\p{N}{1,}| ?[^\s\p{Devanagari}+\p{N}\uA8E0-\uA8FF\u1CD0-\u1CFF]++[\r\n]*|\s*[\r\n]*|\s+(?!\S)|\s+"""
def replace_control_characters(s: str) -> str:
chars = []
for ch in s:
if unicodedata.category(ch)[0] != "C":
chars.append(ch) # this character is ok
else:
chars.append(f"\\u{ord(ch):04x}") # escape
return "".join(chars)
def render_token(t: bytes) -> str:
# pretty print a token, escaping control characters
s = t.decode('utf-8', errors='replace')
s = replace_control_characters(s)
return s
class HindiTokenizer:
def __init__(self, pattern=None, encoding="utf-8"):
self.pattern = SIMPLE_HINDI_PATTERN if pattern is None else pattern
self.compiled_pattern = re.compile(self.pattern, re.IGNORECASE, re.UNICODE)
self.inverse_special_tokens = {}
self.merges = None
self.vocab = None
self.encoding = encoding
self.hindi_varnmala_and_key_units = dedent("""
अ आ इ ई उ ऊ ए ऐ ओ औ अं अः ऋ ॠ
ा ि ी ु ू ृॄ ॅॆ े ैॉ ॊ ो ौ
क ख ग घ ङ क़ ख़ ग़ घ़ ङ़
च छ ज झ ञ ज़ झ़ ञ़
ट ठ ड ढ ण ड़ ढ़ ण़
त थ द ध न त़ थ़ द़ ध़ ऩ
प फ ब भ म प़ फ़ ब़ म़
य र ल ळ व य़ ऱ ल़ ऴ व़
श ष ॺ स ह श़ ष़ स़ ह़
० १ २ ३ ४ ५ ६ ७ ८ ९
॥
""")
self.special_tokens = {}
super().__init__()
def _build_vocab(self):
'''add other important ASCII units except English letters'''
print("\n====================================\n\n"
"Building initial Hindi vocabulary with basic Hindi letters and key tokens")
self.vocab = {}
ascii_letters_encoded = ascii_letters.encode(
encoding="utf-8") # was using this to ignore ASCII English letters, revisit/todo, hindi usage with English or day to day usage and chats may include english letter and what to fill with those blank idxes?
for idx in range(256):
self.vocab[idx] = bytes([idx])
max_idx = max(self.vocab.keys()) + 1
basic_hindi_alphabet = self.hindi_varnmala_and_key_units.strip().split()
for idx in range(len(basic_hindi_alphabet)):
encoded_char = basic_hindi_alphabet[idx].encode(encoding=self.encoding)
new_idx = idx + max_idx
self.vocab[new_idx] = encoded_char
for (pos0, pos1), idx in self.merges.items():
self.vocab[idx] = self.vocab[pos0] + self.vocab[pos1]
# NOW add special tokens defined in __init__()
# NOTE encode special tokens using .encode with UTF-8 encoding
for tok, idx in self.special_tokens.items():
self.vocab[idx] = tok.encode("utf-8")
print("\n=================\nVocab initialisation done...")
# verified the resumed letter from .model file b'\xe0\xa4\x85'.decode("utf-8") is indeed character 'अ' ;
# One index extra is skipped (number idx 357 so had to add +1 where needed when re-building vocab 😅)
# not needed here though.
return self.vocab
# @utilities.log_to_file("HindiTokenizer-train.log")
def train(self, text, vocab_size, verbose=False,
default_initial_vocab_size=256 + 101,
encoding="utf-8",
save_tokenizer_at_train_end: bool = False,
prefix_for_save: str = "Hindi_Tokenizer",
just_replacing_already_seen_tokens_counter_threshold=100,
minting_new_token_for_merge_threshold=10,
current_batch_num=None,
save_at_every_nth_iteration=100
):
"""
text: the incoming text sata in str
vocab_size: int: the new target vocab size to build, used to determine how many merges to run
verbose: bool: to print when a new token is generated and used to merge pairs in the data' ids
encoding: str="utf-8" : the encoding to use
save_tokenizer_at_train_end: bool: a flag to save incrementing vocab and merges dictionaries so later can be resumed and re-used
prefix_for_save: str: the prefix for saving tokenizer files
just_replacing_already_seen_tokens_counter_threshold: int = 50: a threshold int value to check if number of replacements in current batch is for existing pairs created previously
the idea is if a new data batch has no or very few pairs that can be generated as new entries then quickly stop and move to new data batch
minting_new_token_for_merge_threshold: int=10: another threshold for checking if new minted tokens are below or above this, used in conjunction with previous threshold value
current_batch_num: int or None, to indicate what batch number is currently running, for print logs and save files options
"""
if self.vocab is None:
self._build_vocab()
print("\n`Training`...for HindiTokenizer")
assert vocab_size >= default_initial_vocab_size
num_merges = vocab_size - default_initial_vocab_size
stop_this_batch = False
if current_batch_num is not None and isinstance(current_batch_num, int):
current_batch_num = "batch_" + str(current_batch_num) + "_"
prefix_for_save = current_batch_num + prefix_for_save
# split the text up into text chunks
text_chunks = re.findall(self.compiled_pattern, text)
# input text preprocessing
ids = [list(ch.encode("utf-8")) for ch in text_chunks if len(ch) > 1]
# iteratively merge the MOST COMMON pair from the text
# use same merge dict if exists
self.merges = {} if self.merges is None else self.merges # to hold all merges (int, int) -> int
'''Some counters for helping to check running batch's work if all is into replacing already
created tokens/existing ones OR actually finding something new to mint new token & add to merge and vocab'''
minting_new_token_for_merge_counter = 0
just_replacing_already_seen_tokens_counter = 0
# run merging iteratively
for i in range(num_merges):
if i + 1 % save_at_every_nth_iteration == 0:
self.save(file_prefix=prefix_for_save + f"_at_{i}_iteration_",
save_to_folder=pathlib.Path("saved_vocabs"))
merge_start_time = time.perf_counter()
# count the number of times every consecutive pair appears
stats = {}
for chunk_ids in ids:
# passing in stats will update it in place, adding up counts
get_stats(chunk_ids, stats)
# find the pair with the highest count
pair = max(stats, key=stats.get)
while pair in self.merges:
replacing_time_start = time.perf_counter()
just_replacing_already_seen_tokens_counter += 1
'''A simple check that says: If pairs are already seen in this batch
and what happens more is just replacement of already existing pairs,
way more than generating new tokens, best is to skip this batch...
[use those thresholds to experiment further]'''
if just_replacing_already_seen_tokens_counter > just_replacing_already_seen_tokens_counter_threshold \
and minting_new_token_for_merge_counter < minting_new_token_for_merge_threshold:
print("\n\n===========\nStopping current batch as replacing previously learned merges is way"
f" higher than creating new merges\njust_replacing_already_seen_tokens_counter:"
f" {just_replacing_already_seen_tokens_counter}"
f" and minting_new_token_for_merge_counter: {minting_new_token_for_merge_counter}")
stop_this_batch = True
break
# pair was previously merged ... use this first to update IDS
# No need to add to merges and vocab, use previously seen and stored token
already_merged_idx = self.merges[pair]
print(f"\nPair: {pair} already in merged tokens... replacing in IDS...")
print(f"with.. id.. {already_merged_idx}")
# just replace already merged pairs in ids and get new ids and no need to again add to merges and vocab
ids = [merge(chunk_ids, pair, already_merged_idx) for chunk_ids in ids]
print(
f"\nReplacing existing pair:{pair} in IDs took :{time.perf_counter() - replacing_time_start} seconds")
# get updated stats now, here ids are list of lists, so use above way of updating stats
stats = {}
for chunk_ids in ids:
# passing in stats will update it in place
get_stats(chunk_ids, stats)
# just avoiding merging when ids become less than 2
if stats and len(ids) >= 2:
pair = max(stats, key=stats.get)
else:
# no new merges found in this incoming data batch
print(f"\n\nstopping merges as no new byte pair found in the current batch")
stop_this_batch = True
break
if stop_this_batch is True:
break
# mint a new token as the pair was already not in merges: assign it the next available id
idx = len(self.vocab) + 1
minting_new_token_for_merge_counter += 1
# replace all occurrences of pair in ids with idx
ids = [merge(chunk_ids, pair, idx) for chunk_ids in ids]
# save the merge
self.merges[pair] = idx
self.vocab[idx] = self.vocab[pair[0]] + self.vocab[pair[1]]
if verbose:
print(
f"\n\nmerge {i + 1}/{num_merges}: {pair} -> {idx} ({self.vocab[idx]}) had"
f" {stats[pair]:_} occurrences."
f"\ntime taken: {time.perf_counter() - merge_start_time} seconds")
if save_tokenizer_at_train_end:
self.save(file_prefix=prefix_for_save, save_to_folder=pathlib.Path("saved_vocabs"))
def register_special_tokens(self, special_tokens):
# special_tokens is a dictionary of str -> int
# example: {"<|endoftext|>": 100257}
self.special_tokens = special_tokens
self.inverse_special_tokens = {v: k for k, v in special_tokens.items()}
@utilities.log_to_file("HindiTokenizer-decode.log")
def decode(self, ids):
print("\nDecoding...for HindiTokenizer")
# given ids (list of integers), return Python string
part_bytes = []
for idx in ids:
if idx in self.vocab:
part_bytes.append(self.vocab[idx])
elif idx in self.inverse_special_tokens:
part_bytes.append(self.inverse_special_tokens[idx].encode("utf-8"))
else:
raise ValueError(f"invalid token id: {idx}")
text_bytes = b"".join(part_bytes)
text = text_bytes.decode("utf-8", errors="replace")
return text
def _encode_chunk(self, text_bytes):
# return the token ids
# let's begin. first, convert all bytes to integers in range 0..255
ids = list(text_bytes)
while len(ids) >= 2:
# find the pair with the lowest merge index
stats = get_stats(ids)
pair = min(stats, key=lambda p: self.merges.get(p, float("inf")))
# subtle: if there are no more merges available, the key will
# result in an inf for every single pair, and the min will be
# just the first pair in the list, arbitrarily
# we can detect this terminating case by a membership check
if pair not in self.merges:
break # nothing else can be merged anymore
# otherwise let's merge the best pair (lowest merge index)
idx = self.merges[pair]
ids = merge(ids, pair, idx)
return ids
def encode_ordinary(self, text):
"""Encoding that ignores any special tokens."""
# split text into chunks of text by categories defined in regex pattern
text_chunks = re.findall(self.compiled_pattern, text)
# all chunks of text are encoded separately, then results are joined
ids = []
for chunk in text_chunks:
chunk_bytes = chunk.encode("utf-8") # raw bytes
chunk_ids = self._encode_chunk(chunk_bytes)
ids.extend(chunk_ids)
return ids
@utilities.log_to_file("HindiTokenizer-encode.log")
def encode(self, text, allowed_special="none_raise"):
"""
Unlike encode_ordinary, this function handles special tokens.
allowed_special: can be "all"|"none"|"none_raise" or a custom set of special tokens
if none_raise, then an error is raised if any special token is encountered in text
this is the default tiktoken behavior right now as well
any other behavior is either annoying, or a major footgun
"""
# decode the user desire w.r.t. handling of special tokens
special = None
if allowed_special == "all":
special = self.special_tokens
elif allowed_special == "none":
special = {}
elif allowed_special == "none_raise":
special = {}
assert all(token not in text for token in self.special_tokens)
elif isinstance(allowed_special, set):
special = {k: v for k, v in self.special_tokens.items() if k in allowed_special}
else:
raise ValueError(f"allowed_special={allowed_special} not understood")
if not special:
# shortcut: if no special tokens, just use the ordinary encoding
return self.encode_ordinary(text)
# otherwise, we have to be careful with potential special tokens in text
# we handle special tokens by splitting the text
# based on the occurrence of any exact match with any of the special tokens
# we can use re.split for this. note that surrounding the pattern with ()
# makes it into a capturing group, so the special tokens will be included
special_pattern = "(" + "|".join(re.escape(k) for k in special) + ")"
special_chunks = re.split(special_pattern, text)
# now all the special characters are separated from the rest of the text
# all chunks of text are encoded separately, then results are joined
ids = []
for part in special_chunks:
if part in special:
# this is a special token, encode it separately as a special case
ids.append(special[part])
else:
# this is an ordinary sequence, encode it normally
ids.extend(self.encode_ordinary(part))
return ids
# directly from BPE repo
def save(self, file_prefix, save_to_folder: pathlib.Path, version=1):
"""
Saves two files: file_prefix.vocab and file_prefix.model
This is inspired (but not equivalent to!) sentencepiece's model saving:
- model file is the critical one, intended for load()
- vocab file is just a pretty printed version for human inspection only
"""
print("Saving tokenizer...")
# write the model: to be used in load() later
assert save_to_folder is not None and isinstance(save_to_folder,
pathlib.Path), \
"the Path passed to store vocab and models seems to be wrong"
model_file = file_prefix + ".model"
model_file = os.path.join(os.path.abspath(save_to_folder), model_file)
with open(model_file, 'w') as f:
f.write(f"version:{version}\n")
f.write(f"{self.pattern}\n")
# write the special tokens, first the number of them, then each one
f.write(f"{len(self.special_tokens)}\n")
for special, idx in self.special_tokens.items():
f.write(f"{special} {idx}\n")
# the merges dict
for idx1, idx2 in self.merges:
f.write(f"{idx1} {idx2}\n")
# write the vocab
vocab_file = file_prefix + ".vocab"
vocab_file = os.path.join(save_to_folder, vocab_file)
inverted_merges = {idx: pair for pair, idx in self.merges.items()}
with open(vocab_file, "w", encoding="utf-8") as f:
for idx, token in self.vocab.items():
# note: many tokens may be partial utf-8 sequences
# and cannot be decoded into valid strings. Here we're using
# errors='replace' to replace them with the replacement char �.
# this also means that we couldn't possibly use .vocab in load()
# because decoding in this way is a lossy operation!
s = render_token(token)
# find the children of this token, if any
if idx in inverted_merges:
# if this token has children, render it nicely as a merge
idx0, idx1 = inverted_merges[idx]
s0 = render_token(self.vocab[idx0])
s1 = render_token(self.vocab[idx1])
f.write(f"[{s0}][{s1}] -> [{s}] {idx}\n")
else:
# otherwise this is leaf token, just print it
# (this should just be the first 256 tokens, the bytes)
f.write(f"[{s}] {idx}\n")
def load(self, model_file_path):
"""Inverse of save() but only for the model file"""
if isinstance(model_file_path, pathlib.Path):
model_file_path = str(model_file_path.absolute())
assert model_file_path.endswith(".model")
# read the model file
merges = {}
special_tokens = {}
# 256 for default first 256 chars and their bytes next 101 for Hindi
idx = 256 + 101 + 1 # One index extra is skipped initially when creating merges (number idx 357 so had to add +1 where needed when re-building vocab 😅)
with open(model_file_path, 'r', encoding="utf-8") as f:
# read the version
version = f.readline().strip()
print(version)
# read the pattern
self.pattern = f.readline().strip()
# read the special tokens
num_special = int(f.readline().strip())
for _ in range(num_special):
special, special_idx = f.readline().strip().split()
special_tokens[special] = int(special_idx)
# read the merges
for line in f:
idx1, idx2 = map(int, line.split())
merges[(idx1, idx2)] = idx
idx += 1
self.merges = merges
self.special_tokens = special_tokens
self.vocab = self._build_vocab()
# if __name__ == "__main__":
# custom_text = """
# <|endoftext|>ूज रहा है जहाँ चकित हो जन-जन देख अकाज
# सात वर्ष हो गये राह में, अटका कहाँ स्वराज?
#
# अटका कहाँ स्वराज? बोल दिल्ली! तू क्या कहती है?
# तू रानी बन गयी वेदना जनता क्यों सहती है?
# सबके भाग्य दबा रखे हैं किसने अपने कर में?
# उतरी थी जो विभा, हुई बंदिनी बता किस घर में
#
# समर शेष है, यह प्रकाश बंदीगृह से छूटेगा
# और नहीं तो तुझ पर पापिनी! महावज्र टूटेगा
#
# समर शेष है, उस स्वराज को सत्य बनाना होगा
# जिसका है ये न्यास उसे सत्वर पहुँचाना होगा
# धारा के मग में अनेक जो पर्वत खडे हुए हैं
# गंगा का पथ रोक इन्द्र के गज जो अडे हुए हैं
#
# कह दो उनसे झुके अगर तो जग मे यश पाएंगे
# अड़े रहे अगर तो ऐरावत पत्तों से बह जाऐंगे<|fim_prefix|><|endofprompt|>
# """.strip()
# special_tokens = {
# '<|endoftext|>': 100257,
# '<|fim_prefix|>': 100258,
# '<|fim_middle|>': 100259,
# '<|fim_suffix|>': 100260,
# '<|endofprompt|>': 100276
# }
# text = custom_text
# # create a Tokenizer and do 64 merges
# tokenizer = HindiTokenizer()
# tokenizer.train(text, 256 + 2, verbose=True)
# tokenizer.register_special_tokens(special_tokens)
# # verify that decode(encode(x)) == x
# assert tokenizer.decode(tokenizer.encode(text, "all")) == text
|