Spaces:
Build error
Build error
File size: 10,518 Bytes
f54eb92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from itertools import product
import random
import numpy as np
import torch
import torchaudio
from audiocraft.data.audio import audio_info, audio_read, audio_write, _av_read
from ..common_utils import TempDirMixin, get_white_noise, save_wav
class TestInfo(TempDirMixin):
def test_info_mp3(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
for sample_rate, ch in product(sample_rates, channels):
wav = get_white_noise(ch, int(sample_rate * duration))
path = self.get_temp_path('sample_wav.mp3')
save_wav(path, wav, sample_rate)
info = audio_info(path)
assert info.sample_rate == sample_rate
assert info.channels == ch
# we cannot trust torchaudio for num_frames, so we don't check
def _test_info_format(self, ext: str):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(sample_rate * duration)
wav = get_white_noise(ch, n_frames)
path = self.get_temp_path(f'sample_wav{ext}')
save_wav(path, wav, sample_rate)
info = audio_info(path)
assert info.sample_rate == sample_rate
assert info.channels == ch
assert np.isclose(info.duration, duration, atol=1e-5)
def test_info_wav(self):
self._test_info_format('.wav')
def test_info_flac(self):
self._test_info_format('.flac')
def test_info_ogg(self):
self._test_info_format('.ogg')
def test_info_m4a(self):
# TODO: generate m4a file programmatically
# self._test_info_format('.m4a')
pass
class TestRead(TempDirMixin):
def test_read_full_wav(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(sample_rate * duration)
wav = get_white_noise(ch, n_frames).clamp(-0.99, 0.99)
path = self.get_temp_path('sample_wav.wav')
save_wav(path, wav, sample_rate)
read_wav, read_sr = audio_read(path)
assert read_sr == sample_rate
assert read_wav.shape[0] == wav.shape[0]
assert read_wav.shape[1] == wav.shape[1]
assert torch.allclose(read_wav, wav, rtol=1e-03, atol=1e-04)
def test_read_partial_wav(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
read_duration = torch.rand(1).item()
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(sample_rate * duration)
read_frames = int(sample_rate * read_duration)
wav = get_white_noise(ch, n_frames).clamp(-0.99, 0.99)
path = self.get_temp_path('sample_wav.wav')
save_wav(path, wav, sample_rate)
read_wav, read_sr = audio_read(path, 0, read_duration)
assert read_sr == sample_rate
assert read_wav.shape[0] == wav.shape[0]
assert read_wav.shape[1] == read_frames
assert torch.allclose(read_wav[..., 0:read_frames], wav[..., 0:read_frames], rtol=1e-03, atol=1e-04)
def test_read_seek_time_wav(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
read_duration = 1.
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(sample_rate * duration)
wav = get_white_noise(ch, n_frames).clamp(-0.99, 0.99)
path = self.get_temp_path('sample_wav.wav')
save_wav(path, wav, sample_rate)
seek_time = torch.rand(1).item()
read_wav, read_sr = audio_read(path, seek_time, read_duration)
seek_frames = int(sample_rate * seek_time)
expected_frames = n_frames - seek_frames
assert read_sr == sample_rate
assert read_wav.shape[0] == wav.shape[0]
assert read_wav.shape[1] == expected_frames
assert torch.allclose(read_wav, wav[..., seek_frames:], rtol=1e-03, atol=1e-04)
def test_read_seek_time_wav_padded(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
read_duration = 1.
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(sample_rate * duration)
read_frames = int(sample_rate * read_duration)
wav = get_white_noise(ch, n_frames).clamp(-0.99, 0.99)
path = self.get_temp_path('sample_wav.wav')
save_wav(path, wav, sample_rate)
seek_time = torch.rand(1).item()
seek_frames = int(sample_rate * seek_time)
expected_frames = n_frames - seek_frames
read_wav, read_sr = audio_read(path, seek_time, read_duration, pad=True)
expected_pad_wav = torch.zeros(wav.shape[0], read_frames - expected_frames)
assert read_sr == sample_rate
assert read_wav.shape[0] == wav.shape[0]
assert read_wav.shape[1] == read_frames
assert torch.allclose(read_wav[..., :expected_frames], wav[..., seek_frames:], rtol=1e-03, atol=1e-04)
assert torch.allclose(read_wav[..., expected_frames:], expected_pad_wav)
class TestAvRead(TempDirMixin):
def test_avread_seek_base(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 2.
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(sample_rate * duration)
wav = get_white_noise(ch, n_frames)
path = self.get_temp_path(f'reference_a_{sample_rate}_{ch}.wav')
save_wav(path, wav, sample_rate)
for _ in range(100):
# seek will always load a full duration segment in the file
seek_time = random.uniform(0.0, 1.0)
seek_duration = random.uniform(0.001, 1.0)
read_wav, read_sr = _av_read(path, seek_time, seek_duration)
assert read_sr == sample_rate
assert read_wav.shape[0] == wav.shape[0]
assert read_wav.shape[-1] == int(seek_duration * sample_rate)
def test_avread_seek_partial(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(sample_rate * duration)
wav = get_white_noise(ch, n_frames)
path = self.get_temp_path(f'reference_b_{sample_rate}_{ch}.wav')
save_wav(path, wav, sample_rate)
for _ in range(100):
# seek will always load a partial segment
seek_time = random.uniform(0.5, 1.)
seek_duration = 1.
expected_num_frames = n_frames - int(seek_time * sample_rate)
read_wav, read_sr = _av_read(path, seek_time, seek_duration)
assert read_sr == sample_rate
assert read_wav.shape[0] == wav.shape[0]
assert read_wav.shape[-1] == expected_num_frames
def test_avread_seek_outofbound(self):
sample_rates = [8000, 16_000]
channels = [1, 2]
duration = 1.
for sample_rate, ch in product(sample_rates, channels):
n_frames = int(sample_rate * duration)
wav = get_white_noise(ch, n_frames)
path = self.get_temp_path(f'reference_c_{sample_rate}_{ch}.wav')
save_wav(path, wav, sample_rate)
seek_time = 1.5
read_wav, read_sr = _av_read(path, seek_time, 1.)
assert read_sr == sample_rate
assert read_wav.shape[0] == wav.shape[0]
assert read_wav.shape[-1] == 0
def test_avread_seek_edge(self):
sample_rates = [8000, 16_000]
# some of these values will have
# int(((frames - 1) / sample_rate) * sample_rate) != (frames - 1)
n_frames = [1000, 1001, 1002]
channels = [1, 2]
for sample_rate, ch, frames in product(sample_rates, channels, n_frames):
duration = frames / sample_rate
wav = get_white_noise(ch, frames)
path = self.get_temp_path(f'reference_d_{sample_rate}_{ch}.wav')
save_wav(path, wav, sample_rate)
seek_time = (frames - 1) / sample_rate
seek_frames = int(seek_time * sample_rate)
read_wav, read_sr = _av_read(path, seek_time, duration)
assert read_sr == sample_rate
assert read_wav.shape[0] == wav.shape[0]
assert read_wav.shape[-1] == (frames - seek_frames)
class TestAudioWrite(TempDirMixin):
def test_audio_write_wav(self):
torch.manual_seed(1234)
sample_rates = [8000, 16_000]
n_frames = [1000, 1001, 1002]
channels = [1, 2]
strategies = ["peak", "clip", "rms"]
formats = ["wav", "mp3"]
for sample_rate, ch, frames in product(sample_rates, channels, n_frames):
for format_, strategy in product(formats, strategies):
wav = get_white_noise(ch, frames)
path = self.get_temp_path(f'pred_{sample_rate}_{ch}')
audio_write(path, wav, sample_rate, format_, strategy=strategy)
read_wav, read_sr = torchaudio.load(f'{path}.{format_}')
if format_ == "wav":
assert read_wav.shape == wav.shape
if format_ == "wav" and strategy in ["peak", "rms"]:
rescaled_read_wav = read_wav / read_wav.abs().max() * wav.abs().max()
# for a Gaussian, the typical max scale will be less than ~5x the std.
# The error when writing to disk will ~ 1/2**15, and when rescaling, 5x that.
# For RMS target, rescaling leaves more headroom by default, leading
# to a 20x rescaling typically
atol = (5 if strategy == "peak" else 20) / 2**15
delta = (rescaled_read_wav - wav).abs().max()
assert torch.allclose(wav, rescaled_read_wav, rtol=0, atol=atol), (delta, atol)
formats = ["wav"] # faster unit tests
|