Spaces:
Running
on
T4
Running
on
T4
File size: 3,008 Bytes
07d5247 058e9d8 6d70521 058e9d8 01807fb 9d9e3ec 058e9d8 3b633b6 38b12a9 33eab73 3459d34 07d5247 0de1ba7 6b2dfd8 a2749d1 cdd3e1a 3dd76b2 f43cb42 5734bc7 a2749d1 3c734f0 70733c7 058e9d8 a2749d1 b32943f 81727a0 ed810ef 70733c7 3459d34 d5fa67e 70733c7 d3b773f 26d38a8 35b8f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("circulus/canvers-realistic-v3.6", torch_dtype=torch.float16, safety_checker=None)
pipe = pipe.to(device)
pipe.enable_xformers_memory_efficient_attention()
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
def genie (Prompt, negative_prompt, height, width, scale, steps, seed, upscale):
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
if upscale == "Yes":
#n_steps = 30
#high_noise_frac = 0.95
int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image).images[0]
return (int_image, image)
else:
image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
return (image, image)
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
gr.Slider(512, 1024, 768, step=128, label='Height'),
gr.Slider(512, 1024, 768, step=128, label='Width'),
gr.Slider(1, maximum=15, value=7, step=.25, label='Guidance Scale'),
gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'),
gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'),
gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner', value='No'),
],
outputs=[gr.Image(label='Generated Image'), gr.Image(label='Generated Image')],
title="PhotoReal V3.6 with SD x2 Upscaler - GPU",
description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.",
article = "If You Enjoyed this Demo and would like to Donate, you can send to any of these Wallets. <br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80) |