File size: 1,472 Bytes
07d5247
 
 
 
 
de90ccb
 
84cba60
07d5247
8a8a448
07d5247
8a8a448
 
 
07d5247
 
 
 
8f8756e
07d5247
de90ccb
 
 
07d5247
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from stable_diffusion_tf.stable_diffusion import Text2Image
from PIL import Image
import gradio as gr

generator = Text2Image(
    img_height=256,
    img_width=256,
    jit_compile=False)

def txt2img(prompt, guide, steps, Temp):
    img = generator.generate(prompt,
    num_steps=steps,
    unconditional_guidance_scale=guide,
    temperature=Temp,
    batch_size=1)
    image=Image.fromarray(img[0])
    return image

iface = gr.Interface(fn=txt2img, inputs=[
    gr.Textbox(label = 'Input Text Prompt'),
    gr.Slider(2, 20, value = 9, label = 'Guidance Scale: How close to follow Prompt'),
    gr.Slider(10, 50, value = 20, step = 1, label = 'Number of Iterations, more take longer but improve image quality'),
    gr.Slider(.01, 100, value=1, label='Temperature: Changes probability of Diffusion to Image Array, more info in community comments')], outputs = 'image',title='Stable Diffusion with Keras and TensorFlow CPU or GPU', description='Now Using Keras and TensorFlow with Stable Diffusion. This allows very complex image generation with less code footprint, and less text. Simply type in what you wish to see, adjust the sliders (optional) and click submit. For more information on Keras see https://keras.io/about/ For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic', article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>")
iface.launch()